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A TRANSFORMATIONAL COMPONENT FOR
PROGRAMMING LANGUAGE GRAMMAR

By

James M. Boyle

ABSTRACT

The possibility of adapting the linguistic concept of transforma-
tional grammar for use with computer programming languages is
investigated, and a formal definition and computer implementation of
transformations are described. Two rather extensive examples of the
usefulness of transformations as a definitional tool for programming
languages are given.

A transformation consists of two patterns which describe tree
structures in a context free phrase structure grammar. If the deriva-
tion tree of a string in the language of the grammar matches the first
pattern, the string is to be transformed in a manner described by the
second pattern. In the programming ianguage adaptation of transfor-
mations, the transformed string is required to be a string in the same
language as the original string, hence these transformations are called
Intra-Grammatical Transformations (IGTs). In addition to terminal and
nonterminal symbols of the grammar, patterns may contain 'free symbols',
which match any zero or more parts of a tree up to a match of the next
non-free symbol in the pattern. The second pattern of an IGT may
contain subtransformations, which are applied during construction of
the transformed string and may employ items matched in the transforma-
tion containing them. Extensive built-in rules for controlling the

sequence of application of groups of IGTs are also provided.
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1. Introduction

During the past decade, one of the most significant problems in
the theory of programming languages has been the search for suitable
formalisms for programming language definition. Early success in
the definition of syntax was achieved with the use of Backus-Naur
Form grammar to define the syntax of Algol 60, but the development of
a formalism for the definition of semantics has proceeded much more
slowly, although its outlines are now becoming discernible.

A somewhat similar situation has existed in linguistics, where
context free phrase structure grammars (later shown equivalent to BNF)
were successfully used as the major component of grammars describing
parts of the syntax of natural languages. To extend the descriptive
power of these grammars, Chomsky introduced the transformational com-
ponent. Productions in this new comp?nent, called transformations,
are used to define certain semantically equivalent variations in the
surface structure of sentences generated by the phrase structure com-
ponent of the grammar.

The equivalence of BNF and context free grammar suggests the
possibility of a programming-language analog for transformational
grammar, which would be useful in defining those parts of a programming
language which lie athwart the boundary between syntax and semantics:
that is, those aspects which may be defined in terms of global changes

in the form of a program which do not affect its meaning.
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The goal of this investigation, then, is threefold: to show

that transformational grammar can indeed be adapted for use with
programming languages; that it can conveniently describe certain
features of programming languages; and that a system for transforma-
tional grammar can be implemented on a computer so that such definitions

can be tested.
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- ¥y | Informal Introduction to Intra-Grammatical Transformations

This section is a step-by-step introduction to the transforma-
tional system for programming languages. It is intended to provide
an intuitive understanding of the system which will be of assistance
in following the rather complex formal definition given in section
2. The development proceeds by posing a sequence of increasingly
sophisticated programming-language definitional problems and expounding
transformational solutions to them; the discussion of these solutions
introduces aspects of the notation and semantics for various parts
of the transformational system. Throughout these discussions many
italicized terms are defined informally (often by context); formal
definitions of most of them are to be found in later sectionms.

All of the example transformations in this section define aspects
of the semantics of for statements in Algol 60.% Many of them have
direct counterparts among the for statement optimization transforma-
tions discussed in section 3.2; if a few of the remainder seem
contrived, it is the result of a desire to present a unified set of
examples.

Because the transformational system for programming languages
is strongly rooted in the concept of transformational grammar as used
in linguistics, I will first discuss the linguistic concept of trans-

formational grammar briefly, noting some similarities and differences

-
Familiarity with the Revised Report on Algol 60 [30] is assumed. A
slightly modified Algol syntax (used for the examples of section 3)
is included as section 6.1.
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between it and the transformations introduced here.

As mentioned earlier, the concept of transformational grammar
was introduced by Chomsky in terms of a transformational component
to supplement the phrase structure component of natural language
grammars. The transformational component makes two important contri-
butions to the elegance and simplicity of a natural language grammar:
it largely overcomes the inadequacy of phrase structure grammars alone
for generating natural languages, while still permitting retention
of the relatively simple phrase structure component of the grammar;
and it unifies the description of groups of related (usually semanti-
cally equivalent) constructions (e.g., the active and passive forms
of a sentence) by permitting the phrase structure component to generate
but a single parse tree, or deep structure, for the group, with
differences in surface structure among members of the group being
accounted for by the transformational component.

As used in natural language grammars, a transformational produc-—
tion consists of two principal parts: the structural description
(SD) and the structural change (SC). To these are sometimes added
certain additional restrictions, such as equality restrictions. The
structural description is a sequence of terminal and nonterminal
symbols of the phrase structure grammar; if the parse tree of a
particular sentence in the grammar is described by the SD (essentially,
if a line can be drawn in the parse tree through the sequence of nodes
given by the SD without cutting any branches of the parse tree) the

transformation is said to apply. 1If a transformational applies, the
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structural change is interpreted as describing (by an obvious use of
subscripted variables) a rearrangement of the terminal strings of

the subtrees matched by symbols in the SD. Structural descriptions
and structural changes may also contain variable (or indefinite)
symbols, which match any zero or more nodes up to the first occurrence
of the following definite symbol.

Perhaps the most classic linguistic transformation is the passive
transformation for English described by Chomsky (quoted in Bach [2],
P-w62): nTeas™s

Passive, optional:

Structural description: NP - Aux - Vtr - NP
Structural change: X, - X, - X, - X

2 2 3 4

+X, - X +be+en - Xy - by + X

4 2 1

or, in a slightly more economical notation:
NP —Aux'~ ¥.'* — NP" > NP' —Aux ¥+ be + en' -V~ by +'NP
£x 5 Er
This transformation may (optionally) be applied to the parse tree
(assuming a suitable phrase structure grammar) of an English sentence

in the active voice to produce its passive counterpart. For example,

consider the parse tree:

-

Here "-'" denotes concatenation of the strings represented by non-
terminal symbols; '+" denotes concatenation of terminal symbols or
of a terminal symbol and the string represented by a nonterminal
symbol.
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Past
hit pr
John

that is, BZll hit John. The dashed line indicates that the passive
transformation does indeed apply, and the structural change specifies
that the corresponding passive sentence is obtained by interchanging

the strings represented by the first and fourth symbols of the match and

inserting some terminal symbols, giving:
John + Past + be + en + hit + by + Bill

i.e., John was hit by Bill. On the other hand, for the tree:

ey
A2 /\

Past
motion

go away
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no match is possible with the SD of this transformation, and it does
not apply.

The above discussion has carefully avoided the question of
assigning a parse tree to the transformed sentence, which obviously
would be required if it were necessary to apply another transforma-
tion to it. This is still somewhat an open question and has not been
treated adequately in the open literature. (The principal discussion
is in unpublished notes of Chomsky. Bach [2] provides a brief intui-
tive discussion, and Petrick [31] discusses the problem from the
analytic, rather than generative, point of view.)

In adapting the concept of transformational grammar to programming
languages, I have overcome the difficulty of specifying the parse tree
for the transformed string by viewing the written, or concrete, forms
of the SD and SC of a transformation as convenient representations for
their abstract forms, which are tree structures (sd and sc trees)
similar to parse trees. To apply such‘a transformation its sd tree
is matched against the (upper part of the) parse tree to be trans-
formed, and if it matches, the sc tree is used to construct the (upper
part of the) parse tree of the transformed string. Suitable restric-
tions on the sc tree insure that the transformed string has a parse
tree in the same grammar as the original string, hence the name intra-
grammatical transformations (IGTs). Transformations constructed in
this manner are also much more nearly invertible (e.g., for use in
generation rather than analysis) than those customarily employed in

linguistics.
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To introduce the notation for the concrete forms of IGTs, I will
cast the above passive transformation as an IGT; its interpretation
remains unchanged:

s{¥sn!
NP"]." Aux|'lll vtrlllll NP”Z"

NP"2" Aux"1" be en Vtr"l” by NP"1"
'SC'}
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1.1.1 Elementary Intra-Grammatical Transformations

To begin this discussion of elementary aspects of IGTs, con-
sider the definition of the simplest form of for statement in Algol
60, i.e., a for statement whose <for list> is simply an <arithmetic
expression> (cf. sections 4.6.1 and 4.6.4.1 of the Revised Report
[30]). The concrete form of an IGT which converts this form of for

statement into its equivalent Algol statements is:

<statement>{

comment Transformation 1*;

'SD'
for <variable> "1" := <arithmetic expression> "1" do
<statement> "1"
==>
begin <variable> "1" := <arithmetic expression> "1";
<statement> '"'1"
end .
'SC'}

The structural description of this IGT is the string of symbols found
between the delimiters 'SD' and ==> while the structural change is
delimited by ==> and 'SC'. The initial symbol "<statement>'" is the
dominating symbol of the IGT and indicates in an obvious manner the

head symbol of the sd tree and sc tree which constitute the abstract

*
The Algol 60 convention of delimiting comments by 'comment' and ";"
is followed; comments may be inserted anywhere in a transformation.
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ing to
form of the transformation. In this case, the sd tree (according

the Algol 60 grammar) is:
<statement>
<for statement>

<for clausez <statement>
"y
1

for <variable> s=dedcForl [sit> o
Hlll

<for list element>

<arithmetic expression>
e
The sc tree is constructed according to the grammar in a similar

manner, and begins:
<statement>
<unconditional statement>

<compound statement>

Throughout the remainder of this discussion transformations will
always be written in their concrete form, but it is important to keep
in mind that they are actually tree structures.

In the SC, the variable consisting of a symbol and its index

(e.g. <statement> "1") indicates where in the transformed tree the
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subtree matched by an occurrence of that variable in the SD is to be

placed. For example, Transformation 1 applies to the statement:

For d = 2 do ali] :=2xi (1)

to produce the statement:

begin i := 2;
af[i] := 2xi (Tl(l))
end
Note, however, that it does not applv to the statement:
for i := 1, 2 do a[i] := 2xi (2)

since the <for list> subtree of this statement is:

<for list>

<foy 1ist> d <for list element>
<for list element> <arithmetic expression>

<arithmetic expression>

which is not of the same form as the <for list> subtree of the sd tree.
A somewhat more interesting IGT is the one defining the meaning

of the for statement with a step-until element. Modifying the defini-

tion of section 4.6.4.2 of the Revised Report slightly, this may be

written:
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<statement>{
comment Transformation 2;

lSDV
for <variable>

<arithmetic expression>

y

’ ) ; -

"M .= <arithmetic expression> "17 Step ;
: "

121 yntil <arithemtic expression> "3

do <statement> "1"

==>
begin <variable> """ .= <arithmetic expression> A
<label> "1":
1 N(<variables 1 =
x sign (<arithmetic expression> "2") < 0 then

(<arithmetic expression> e tl)

begin <statement> e
:= <variable> "1"

<variable> "1" :=
+ (<arithmetic expression> '2");
go_to <label> "1"
end
end

Useil
(This transformation represents a "literalist' interpretation of
section 4.6.4.2. For others see [19,21].)

In addition to illustrating the use of different indices to dis-
tinguish between occurrences of the same non-terminal symbol, this
transformation also introduces the notion of generable symbol. A
generable symbol is a variable, such as <label> "1" in Transformation
2, which appears in the SC of a transformation but not in the SD. The
use of such a variable in the SC occasions the generation of a subtree
headed by that symbol, which is then associated with that variable just

as if it had occurred in the SD. Of course, in this example, care must

be taken to generate a <label> which does not occur elsewhere in



(Ll 1) 19

the program being transformed.

Transformation 2 applied to the string:
for i := 1 step 2 until n do a[i] := 2xi (3)

transforms it into:

begin'l = 1;
label7:
if (i - (n)) x sign (2) < O then (1,(3)
begin a[i] := 2xij;
g = 1 + (2);

go to label7
end

end

Now one may very well complain that the transformed statement
in the above example is unnecessarily complicated, even though this

complication is required in the transfiormation of:

for i := 0 step j until k do

begin a[i] := 2xi; (4)
dlest =2 5
k := -k

end

(which is presumably to be executed for i = 0, -2, +2, -6 when

initially j = 1, k = 6). More appropriate for (3) would be:
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<statement>{
comment Transformation 3;
|SDI

. . maqn
for <variable> "1'" := <arithmetic expression> "1" step

. "
<unsigned integer> "1" until <arithmetic expression> "2" do
<statement> '"1"

==>

begin <variable> L b

= <arithmetic expression> "1";
<label> """

if <variable> "1" < <arithmetic expression> g hen

begin <statement> b

<variable> "1" :=

~ <yariable> "1" + <unsigned integer> "1";

go to <label> "1"
end

end

UscH]

The result of Transformation 3 applied to (3) is:

EEEEE dei=i
label8:
if i < n then
begin afi] := 2xi; (T3(3))
Aie=" it 2
go to label8
end

end

while it does not apply to (4), since j is not an <unsigned integer>.
The introduction of Transformation 3 raises two questions: When
two or more transformations are present{ in what order should they

be applied? What further improvements can be made in the transformed
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<statement> for simple for statements like (3)? The first of these
questions is discussed in the following section; the other is dis-

cussed in section 1.1.3.

21
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i tions
1.1.2 Sequencing Rules for Intra-Grammatical Transforma

the order
Hor: Transformation 2 and 3 of section 1.1.1 the guestigs of
i i ily: appl
in which they should be applied can be answered quite easily pply
, since Transformation 3 applies

Transformation 3 and then Transformation 2
i 2, “Thus
to a more restricted class of statements than does Transformation

for statement (3), Transformation 3 would apply, and clearly Transformation

2 will not apply to T3(3), whereas for statement (2), Transformation 3

will not apply, permitting the application of Transformation 2. A further

example will illustrate that this simple sequencing rule must be extended

in order to be useful, however.

Consider constructing transformations to define the semantics of

multiple <for list element>s. A straightforward solution to this problem

is to replace a for statement having »n <for list element>s by a compound

sth : -
statement consisting of # for statements, the i~ of which contains only

the ith <for list element> of the original (cf. [6]). Such an approach
involves n replications of the controlled statement, however, and in
practice it is usually more efficient to construct a procedure from the
controlled statement and call it in each of the »n for statements (cf.

Grau, Hill, and Langmaack [15], p. 96). The following transformations

express this definition:
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<statement>{

comment Transformation 4.1;

'SD'
for <variable> "1" := <for list> "1", <for list element> '"1'" do
<procedure statement> '"1"
==>
begin for <variable> "1" := <for list> "1" do
<procedure statement> '"1";
for <variable> "1" := <for list element> "1" do
<procedure statement> "1"
end
O

comment Transformation 4.2;
1sp!
for <variable> "1" := <for list> "1", <for list element> "1" do
<statement> "1"
==>
begin procedure <identifier> "1"; <statement> '"1';
Foxrsvariable> 1" := <for . 1ist> "1"udo <identifier> U1l
for <variable> "1" := <for ligt element> "1" do
<identifier> '"l"
end
ger]

Note that when one or more transformations have the same dominating
symbol they are all written within the braces indicating the scope

of the dominating symbol. If the dominating symbol is, e.g.,
<statement>, such a construction is called a <statement>-transformation
list.

Applied to (2) of section 1.1.1, the above transformations produce

the transformed statement:
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1= 2xi;

begin procedure identifier3; a[i]
2
for i := 1 do identifier3; (T4_2( )

for i =2 do identifier3

end

However, consider:

for i := 1, 2, 3 do P(i) (5

Transformation 4.1 applies to give:

begin for i := 1, 2 do P(i);
for i := 3 do P(i) (T, 169

end

Clearly what is necessary to complete the transformation of (T4.1(5))
is to require the (recursive) reapplication of Transformations List
4, i.e., it must be reapplied to any <statement>s introduced as

a result of transformation. (In practice, it is efficient to do

this during the construction of the parse tree specified by the SC.)

Then (5), when fully transformed, becomes:

begin
beginsfor is:= 18do  Bi(1));
for i = 2 do, P(i
. do P(i) (T, 1(T, 1(5))
end;

for i := 3 do P(1i)

end

The sequencing rule for a transformation list is thus: Attempt
to apply the transformations in order. ‘If none applies, the result

is the original tree. If some transformation does apply, attempt
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to apply the transformation list to all subtrees constructed during the
construction specified by the SC (i.e., apply the transformation

list recursively to the transformed parse tree). One should note

that this sequencing rule is essentially the appropriate generalization
for tree structures of the sequencing rule for Markov algorithms
without terminal productions (cf. [29], chapter 5). However, it

is perhaps most properly viewed as a consequence of the general rule
for the application of transformation lists to the parse tree of

a <program>, discussed below.

It is reasonable that the application of, say, a <statement>-
transformation list to the parse tree of a <program> should mean
that the transformation list is applied to each subtree of the parse
tree headed by <statement>. However, for symbols such as <statement>
in Algol 60, where a <statement> subtree may itself contain <statement>
subtrees, it is necessary to specify whether transformation lists
are to be applied in a top-down or bott;m-up traverse of the parse
tree.

There does not seem to be any strong theoretical reason to choose
one of these orders over the other, but it is an empirical fact (cf.
the examples of section 3) that bottom-up order is an advantageous
choice. This choice is perhaps partly justified because it enables
one to write, for example, a <for statement> transformation list
with the knowledge that when it applies to a <for statement> which
originally contained other <for statement>s, the contained

<for statement>s have already been fully transformed according to
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that transformation list. Of course, for this statement to be valid,

the <for statement>-transformation 1ist must be reapplied (in bottom—

up order) to any <for statement>s generated in the construction of

the transformed subtree. This reapplication rule, together with

the fact that every transformed subtree is headed by the same symbol

as was the subtree it replaces, naturally results in what appears
to be generalized Markov sequencing of transformation lists.

The choice of bottom-up sequencing is also partly justified
by the fact that a kind of top-down sequencing rule applies to the
matching of indefinites (cf. section 1.1.3); thus both kinds of
sequencing are available. Finally, the choice of bottom-up sequencing
coincides with that recommended by Chomsky for natural language trans-
formational grammars in his more recent thinking (cf. [10], pp. 134,
18554 3)8

The solution of the following problem not only illustrates one
advantage of bottom-up sequencing, but also introduces the concept of
transformation set. Consider again Transformation 3 of section 1.1.1.

As written, it will not apply to:
for i := 1 step +2 until n do a[i] := 2xi (6)

(because +2 is not an <unsigned integer>) even though this statement
could just as well be transformed in a manner analogous to T3(3). One
possibility, of course, is to write another transformation identical

to Transformation 3 in every respect except with + <unsigned integer>

"1" replacing <unsigned integer> "1" in the SD.
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A simpler and more general solution, however, is to combine the

following <simple arithmetic expression>-transformation list:

<simple arithmetic expression>{
comment Transformation 5;
ISDI
+ <term> "1"
==>
<term> "1"

tsg
with the <statement>-transformation list containing Transformation 3.
Such a group of one or more transformation lists, no two having the
same dominating symbol, is called a transformation set. The sequenc-—
ing rule is then modified to read as follows: Given a transformation
set and the parse tree of a <program>, attempt to apply the transfor-
mation set (recursively) to each subtree of the parse tree, traversed
in bottom-up, left-to-right order. By &pplication of a transformation
set to a subtree of a parse tree is meant: If the transformation set
contains a transformation list whose dominating symbol is the same as
the head symbol of the subtree, apply that transformation list to the
subtree; otherwise do nothing. (Note that the order of the transforma-
tion lists comprising a transformation set is immaterial; this is
reflected by the name '"transformation set'". The name '"transformation
list'", on the other hand, reflects the significance of the order of
the transformations comprising it.)

The bottom-up sequencing rule for transformation sets thus
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guarantees that by the time Transformation 3 is applied to (6), the

step element +2 will have been replaced by simply 2%
There remains one further combination of transformations to be

defined: the tramsformation set sequence. As its name implies, it

is a sequence of transformation sets. The rule for applying a trans-—
formation set sequence to a <program> parse tree is quite simple:
Apply the first transformation set of the sequence to the parse tree
(according to the rule given above), and then apply each succeeding
transformation set to the transformed <program> parse tree produced
by its predecessor; the result of applying the sequence is the trans-—
formed <program> parse tree produced by the last transformation set.
An example of the use of transformation set sequences is the sequence
consisting of the Identifier Denotation Transformation Set and the
For Statement Optimization Transformation Set described in section 3.
To help the reader verify his understanding of the concepts
introduced so far, I conclude this section with the description of a
transformation set sequence (consisting of a single <statement>-
transformation list) which, applied to a <program> parse tree, com-
pletely eliminates all for statements in it, substituting for them
their definitions in terms of simpler Algol statements (without,

however, making any attempt at optimization):
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{<statement>{
comment Transformation 6.1. (This is transformation 2);
'SD'
for <variable> "1" := <arithmetic expression> "1" step
<arithmetic expression> "2" until <arithmetic expression> "3"
do
<statement> "1"

—

begin <variable> "1" := <arithmetic expression> "1";
<lahel>""1":
if (<variable> "1" - (<arithmetic expression> "3"))

x sign (<arithmetic expression> "2'") < 0 then

begin <statement> "1";
<variable> "1" := <variable> "1"
+ (<arithmetic expression> "2");

go to <label> "1"

end
end
1sc!
comment Transformation 6.2; .
' SD Al
for <variable> "1" := <arithmetic expression> "1"
while <Boolean expression> "1" do
<statement> ''1"
==>
begin

<label> "1'": <variable> "1" := <arithmetic expression> '"l1'";
if <Boolean expression> "1" then
begin <statement> "1";
go to <label> "1"
end
end
1sc!
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comment Transformation 6.3. (This is Transformation 1);

lsD'
for <variable> "1" := <arithmetic expression> "1" do
<statement> "1"
==>
begin <variable> "1" := <arithmetic expression> "1";
<statement> "1"
end
Gt
comment Transformation 6.4. (This is Transformation 4.1);
ISDI
for <variable> "1" := <for list> "1", <for list element> "1" do
<procedure statement> ''1"
—
begin for <variable> "1" := <for list> "1" do
<procedure statement> 'l1";
for <variable> "1" := <for list element> '1" do

<procedure statement> ''1"

end
'SC'
comment Transformation 6.5. (This is Transformation 4.2)5
'SD’
for <variable> "1" := <for lists> "1", <for list element> "1" do

<statement> "1"

—=

begin procedure <identifiers "1"; <statement> Ui~

for <variable> "1" := <for list> "1" do <identifiers> i
for <variable> "1" := <for list element> "1" do

<identifier> "1"

'SCTYI
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One may verify that application of this transformation set sequence to

a <program> parse tree containing the <statement> subtree:

for i := 1, i+l while a[i] # O do
for j ':= 1 step 1 until n do b[i,j] := a[i]x]j

ylelds (g 9¢T%6.30%6.5(T6,1 (7))

begin procedure identifier2;
begin j := 1;
labell:
if (3-(n)) x sign (1) < O then
begin b[i,j] := a[i]xj;
j = j+(1); go to label 1
end
end;
begin i := 1; identifier2 end;
begin label3: i := i+l;
if ali] # O then
begin identifier2; go to labela end
end

end

(7

3
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1.1.3 Complex Intra-Grammatical Transformations: Indefinites

Consider again the second question raised at the end of section

1.1.1: What further improvements can be made in the transformed

statement for simple for statements? Most of the improvements one

would like to make consist of moving some computation which is invar-
iant with respect to the loop to a position outside the loop, e.g.,
moving the calculation of the until-expression outside the loop.

The chief problem, then, is to determine invariance; this consists
primarily in checking that the computation does not contain the loop
variable, nor a variable assigned in the loop, and that the loop
contains no procedure calls, etc., which could result in "hidden"
changes in variables in the computation being checked (cf. section
3.2 for a more detailed discussion of this problem).

Such checking operations require some convenient means of search-
ing a subtree for any occurrence of some other (usually previously
matched) subtree. To enable IGTs to express these searches, indefinite
nodes, or indefinites, are introduced. Consider the problem of
searching the until-expression of a for statement for an occurrence

of the loop variable; using an indefinite this may be expressed:

<statement>{
comment Transformation 7;
'SD'
for <variable> "1" := <arithmetic expression> '1"
step <arithmetic expression> "2" until

<arithmetic expression> "3" { ? <variable> "1" ? }
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do <statement> "1"

==>
comment Same SC as Transformation 2;

¥Set}
Here <arithmetic expression> "3" is an indefinite, and has an indefi-
nite list consisting of { ? <variable> "1" ? }.* The symbol "?"
is called the free symbol. When used in the SD of a transformation,
a free symbol matches that part of a subtree (possibly nothing at
all) up to an appropriate occurrence of the next non-free symbol.
When used in the SC of a transformation a free symbol simply acts
as a placeholder for the part of the tree in matched in the SD.

Three obvious restrictions are placed an indefinites: (1)

no two free symbols may be adjacent, since there would then be no
way to determine where one ended and the next began: (2) if a given
variable is indefinite in the SC, it must be indefinite exactly once
in the SD, to insure that the part of the tree matched by the free
symbols can be found; and (3) the head symbols of the subtrees and
the free symbols in the indefinite lists must be the same, and occur
in the same order, in the SD and SC, to insure that a correct tree

is obtained when copying the indefinite.

*
Non-indefinite lists, which contain no occurrences of "?'", are also
permitted, e.g.,
<subscript expression> "1" {<unsigned integer> "1" x <variable> "1"
<adding operator> "1" <unsigned integer> "2"}
They are useful for giving names to subtrees which must have a certain

substructure, and for obtaining compliance with restriction (3) of the
following paragraph.
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Some further examples will help to illustrate the meaning of

indefinites. It should be clear that Transformation 7 applies to:

for i := 1 step 1 until 10-i do

8
a[i] := 2xi (8)
and also to:
for i := 1 step 1 until nxi-7 do
a[i] := 2xi 9)

but does not apply to, e.g., (3) or (4) of section 1.1.1. (Note
that when the same variable occurs more than once in the SD of a
transformation all occurrences must match equal subtrees.)

Had the indefinite of Transformation 7 been written:
<arithmetic expression> "3" { ? <variable> "1"}

it would apply to (8) but not (9), i.e., if there is no free symbol
to the right (left) of a non-free symbol, the subtree matched by
the non-free symbol must not have any subtrees to the right (left)
of it. Similarly, two adjacent non-free symbols must match
"adjacent" subtrees (i.e., there must be no subtrees between them) .

For example, the transformation:
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<statement>{
comment Transformation 8;
lSDl
for <variable> "1" := <arithmetic expression> "1" step

<arithmetic expression> "2" until <arithmetic expression> "3"
do
<statement> "1" { ? <variable> "1" := ? }
==>
comment Same SC as Transformation 2;

'SC'}
applies to:

for i := 1 step 1 until n do

begin a[i] := 2xi; (10)
i = i+l
end

but not to:
for i := 1 step 1 until n do (11)
begin a[i] := 2xi end

A more complex use of indefinites is illustrated by a trans-
formation which determines whether the until-expression of a for

statement contains a variable assigned in the controlled statement:
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<statement>{
comment Transformation 9;
1sp!
for <variable> "1'" := <arithmetic expression> "1" step
<arithmetic expression> "2" until
<arithmetic expression> "3" { ? <identifier> o]

do <statement> '1"

{ ? <variable> [ <identifier> "1" ? } =2 }
==>
comment Same SC as Transformation 3;
Ysehl
In this transformation the success or failure of the match of
<identifier> "1" in the second indefinite influences the match of
<identifier> "1" in the first indefinite.

Transformations 7, 8, and 9 are but a few of several which are
required to determine whether a for statement can contain invariant
calculations. Each of these transformations has the property that if
it applies to a for statement, certain calculations are not invariant
and the for statement is to be transformed in the most general way;
thus all of the transformations have essentially the same SC.

When this is the case, the transformations are simplified by
having each of them mark the for statement in a way which prevents
the transformation from reapplying; a single transformation placed
late in the list then converts all marked for statements to the geﬁeral
form described by Transformation 2. Perhaps the most convenient
markers are obtained by introducing '"synonyms'" for terminal symbols;

in this case forl, for2, etc., are appropriate. This method is
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especially flexible if a name can be given to the whole collection

of synonyms for a given terminal symbol, either by replacing, say,

the symbol for in the Algol grammar by <for symbol> and adding a
production <for symbol> ::= for | fEEl,| for2 ‘or-elseibyiletting

an indexed terminal symbol in a transformation match either itself

or any of its synonyms; this latter approach is used in the trans-
formations discussed in section 3. Using markers, the SC of Transfor-

mations 7, 8, and 9 would be (T', T', and T!):
8 9

forl <variable> "1" := <arithmetic expression> "1'" step
<arithmetic expression> "2'" until <arithmetic expression> "3"
do

<statement> "1"

while the beginning of the SD of Transformation 2' (which must occur

after Transformations 7', 8', and 9' in the list) would be:
<for symbol> <variable> "1" :=

(or for "1" <variable> "1" := ..., if the second approach above is
employed) .

Another use of a marker is illustrated by a transfo;mation which
looks for a procedure or function procedure call anywhere in a for

statement after step:
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<statement>{

comment Transformation 10;

'SD'
<for statement> "1"
{<for symbol> {for} <variable> "1" := <arithmetic expression> Y

step ? <procedure identifier> "1" ?}

==>

<for statement> "1"

{<for symbol> {forl} <variable> "1" := <arithmetic expression> "1"
step ? <procedure identifier> "1" ?}
'SC'}
Note that Transformation 10 obeys restriction 3 mentioned earlier even
though for and forl differ, since in both cases the head symbol of the
subtree containing them is <for symbol>.

Transformation 10 applies to:

Eom =N step f(x) until n do

ellpt]] e st i
and
for i := 1 step 1 until n do
(13)

begin a[i] := 2xi; p(x,y,i) end

among others.

If no transformation like 7', 8', 9' or 10 applies to a given for
statement, so that the until-expression is known to be invariant with
respect to the loop, it may be transformed according to Transformation

11 (which must, of course, precede Transformation 2") =
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<statement>{
comment Transformation 11;
ISD'
for <variable> "1" := <arithmetic expression> "1" step
<unsigned integer> "1" until <arithmetic expression> "2'" do
<statement> "1"
==>
begin integer <identifier> "1";
<variable> "1" := <arithmetic expression> '"1";
<identifier> "1" := <arithmetic expression> '2";
<label> "1": if <variable> "1" < <identifier> "1'" then
begin <statement> "1";
<variable> "1" := <variable> '"1"
+ <unsigned integer> '"1";
go to <label> "1"
end
end

'SC'}
Any for statements with step-until elemenss to which Transformation 11 does
not apply would then be transformed by Transformation 2'.
The chief remaining class of computations some of which may be
invariant (or linear) with respect to the loop is the calculation of

subscripts; searching subscript expressions for occurrences of variables

assigned in the loop will be considered in the following section.
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1.1.4 Complex Intra-Grammatical Transformations: Subtransformations

The last feature of IGTs remaining to be described is subtrans-
formations (technically, subtransformation sequences). As the name
implies, a subtransformation is basically a transformation which
occurs within the SC of another transformation. The use of subtrans-
formations considerably increases the elegance of many transformational
definitions, as is perhaps best illustrated by the identifier denota--
tion transformations described in section 3.1.

The simplicity and convenience of subtransformations derives
primarily from two aspects of their semantics: their ability to
employ indexed symbols matched in the SD (or generated in the SC)
of the transformation(s) in which they occur; and their more limited,
non-recursive sequencing rules. These concepts can be illustrated
by considering a transformation which examines the controlled statement
of a for statement and marks all subscripted variables which contain
a variable assigned in the controlled statement by replacing "["

with the marker ”[l":
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<for statement>{
comment Transformation 12;
'sp!
for <variable> "1" := <for clause> "1" { ? step ? } do
<statement> "1"
{ ? variable "2" {<identifier> "1" ? }
<assign symbol> {:=} ? }
==>
for <variable> "1" := <for clause> "1" do
<statement> "1" { ? <variable> "2" <assign symbol> e=lid
{comment Transformation 11.A.1;
'sp’
<statement> "11"
{ ? <subscripted variable>
{ <identifier> "2" <left bracket> {[} ?
<identifier> "1" 2 ] } ?
}
==>
<statement> "11"
{ ? <subscripted variable> »
{ <identifier> "2" <left bracket> {[1} ?
<identifier> "1" 2 ] } ?
.
}

'SC'}

In this transformation, the main transformation applies to any
for statement with a step-until element and at least one variable
followed by ":=" in its controlled statement, and in constructing
the transformed controlled statement, it marks that variable as

having been investigated by replacing ":=" by "..=". (Thus the
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main transformation eventually will cease to apply.) Furthermore,

after the transformed controlled statement has been constructed,

the subtransformation is applied to it. Since the subtransforma-

tion has available to it the identifier of the variable assigned
(<identifier> "1"), it can mark any subscripted variables containing
that identifier in their <subscript list>. Insertion of the marker
"[l" not only guarantees termination of the subtransformation but

also identifies the subscripted variable as non-linear and non-constant
to a later optimizing transformation (cf. section 3.2). Note that

the construction:

<variable> "2" {<identifier> "1" ? } :

is used to determine <identifier> so that the identifier of a sub-
scripted variable, rather than the entire subscripted variable, is
obtained.

Consider the statement:

for i := 1 step 1 until n do

begin j := n-i; (14)
clalk]] := i;
a[il := blj]

end

One complete application of Transformation 12 produces (T7p(14)):
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for 1 := 1 step 1 until n do

begin j ..= n-i;
claf[k]] := i;
ali] := b[j]

end

(Here <identifier> "1" was "j".) The transformation reapplies,

giving (le(T12(14)):

for i :=1 step 1 until n do
begin § Ge= m-ds

elalk]] .= 1;

a[i] := b[,j]

end

(In this case, <identifier> "1" was '"c'", and the subtransformation
did not apply.) Finally, it applies a third time to give (le(le

(T,,(16))):

for i := 1 step 1 until n do

begin j ..= n-i;
c[la[k]] A i
al[i] ..= b[lj]

end

Thus c[a[k]] and b[j] have been marked as neither invariant nor
linear.

Note that the dominating symbol for Subtransformation 12.A.1 is
<statement> "1"; the general rule for determining the dominating
symbol of a subtransformation is that it is the symbol immediately

preceding the "{" symbol introducing the subtransformation list,
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unless that symbol is "}", in which event the dominating symbol is
the dominating symbol of the "{" symbol matching the "}" symbol.

In particular, one may have more than one subtransformation list
(i.e., a subtransformation sequence of length greater than one) with
the same dominating symbol. In this case the subtransformation lists
making up the sequence are applied one after another in exact analogy
to the rule for applying the transformation sets of a transformation
set sequence. The scope rules for indexed symbols in this case are
analogous to the scope rules for identifiers in Algol 60: a sub-
transformation "knows" all the indexed symbols in transformations
containing it, but, of course, it does not have access to those in
other subtransformations in its list or sequence (cf. sections 2.2.1
andn28:2).

The sequencing rules for subtransformation lists differ from
those for transformation lists in that a subtransformation list is
applied only to that subtree of the parse tree which is constructed
from its dominating symbol (i.e., no traverse is made of this subtree).
It continues to be applied to this subtree until no transformation
in the list applies. The reasons for adopting this sequencing rule
are most empirical; they are discussed further in sections 2.3.2
and 4.1. No further examples of subtransformations will be given
here, as the detailed examples of section 3 contain numerous appli-
cations of them.

This discussion brings to a close the informal introduction

to intra-grammatical transformations. One should now be prepared
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to study their formal definition in section 2, and to understand the
examples of section 3. Before the formal definition of IGTs is
introduced, however, their relation to earlier work will be briefly

discussed in the following section.
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1.2 Relation of Intra-Grammatical Transformations to Previous Work

As discussed above, IGTs are based on natural language transfor-
mational grammars, especially as defined by Chomsky [1055 1] ey,
may thus be considered both in relation to work in linguistics on
transformational grammar, and in relation to previous similar work
in programming language theory.

Much of the research on transformational grammar in linguistics
has been concerned with its use as a tool for describing various
aspects of natural languages. This work is relevant to IGTs only
to the extent that it has provided feedback concerning the adequacy
of transformational grammar to its linguistic tasks; a number of
modifications suggested by this work are discussed in [10].

There are, however, a few computer implementations of transforma-
tional grammars as used in linguistics. As mentioned above, Petrick
[31] has implemented a transformational analysis system with the
goal of inverting a transformational grammar in order to use it to
analyze the sentences it genmerates. Such a system immediately
encounters two problems: First, no general algorithm for inverting
transformations is known (cf. Hays [18], cha. 8). Second, it is
very difficult to assign sufficient tree structure to an input string
to determine when an inverted transformation applies, since the only
phrase structure grammar available to such a system is the one which
generates the 'deep structure" of the strings, i.e., their tree

structure before any (generative) transformations have applied to
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them. Petrick considers and rejects the introduction of a '"covering
grammar' (essentially the intra-grammatical restriction imposed on
IGTs), since such a grammar is not usually available or derivable
for natural language transformational grammars, and attacks the
problem by alternating application of phrase-structure parsing and
transformational analysis. Unfortunately this technique is slow
and only applies to a subset of all transformational grammars.

Friedman [14] has also described a computer system for transfor-
mational grammar. This system was designed with the goal of providing
the linguist with a comprehensive generative transformational system
which would assist him in formulating and ''debugging' transformational
grammars for natural languages. Like IGTs, it is a generalization
and formalization of the concept of transformational grammar of
Chomsky [10]. Except for the introduction of some quite powerful
control mechanisms, most of the generalization has been introduced

»

to better adapt the system to its linguistic tasks and at present
has little application to programming languages. The basically genera-
tive orientation of the system also limits its usefulness with pro-
gramming languages, except perhaps for its intended use as a tool
to assist in the design of a (generative) grammar for a specific
language.

Several authors in the field of programming languages have
described systems similar to grammatical transformations, although
apparently no one has emphasized the analogy. These systems are

frequently described by the term 'generalized Markov algorithms,"
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since they typically employ the matching and sequencing rules for
Markov algorithms (cf. [29] for an introductory discussion of Markov
algorithms). Perhaps the most important among these systems are

those of Caracciolo (cf., for example [9]; the details of Caracciolo's
work have not been published in the open literature), de Bakker [4],
and Iturriaga [20]. These systems are described in section 3.2 of

a recent excellent survey article by de Bakker [3], and will not

be further described here. Iturriaga claims that his system differs
from the others in that the transformations operate on tree structures
(as do IGTs) rather than on strings. Three other systems incorporating
tree transformations but not discussed by de Bakker are those of
McIntosh (not published; discussed informally by Brody [7]), Reynolds
[34], and Maruyama [24].

The system of IGTs introduced here differs from the above systems
in three principal ways: first, in the use of FREE symbols and the
method of matching indefinites in the SD and transmitting their tree
structure to the SC; second, in the introduction of subtransforma-
tions and their scope rules; and third, in its emphasis on built-
in sequencing mechanisms rather than ad hoc methods, such as each
transformation explicitly nominating its successor. Furthermore, the
examples of IGTs discussed in section 3, especially the for state-
ment optimization transformation set, represent new applications of

transformational methods to the description of programming languages.



(2) 49

2. Intra-Grammatical Transformations

Section 2 comprises the formal definition of intra-grammatical
transformations over a context free phrase structure grammar G, the
proof of a few theorems characterizing some formal properties of
these transformations, and the discussion of a computer implementa-
tion of an intra-grammatical transformation system.

The formal definition of IGTs consists of a specification of
their syntax and semantics. The syntax specification describes both
the abstract form of IGTs--the tree structures which represent the
SDs and SCs of transformations--and the concrete form of IGTs--a
linear written representation of the abstract form. The semantic
specification describes the conditions under which a parse tree P,
is the result of applying a transformation to another parse tree Py
One should note that this semantic specification does not describe
how to compute P, but only how to determine whether P, is the trans-
form of P the LISP functions described in section 2.5 define the
computation of P, from p1 and the transformation.

The notation and some basic definitions used in defining the
syntax and semantics of IGTs will be introduced in the following sub-
section. It also defines the parse trees which represent the programs

being transformed.
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2+1 Notation and Definitions

The notation used to define the syntax and semantics of IGTs
is that of the "Method and Notation for the Formal Definition of
Programming Languages" [23], hereafter referred to as the "Vienna
Report." Familiarity with sections 1.3, 2, 3.1, 3.2, 4.4.3, and
4.4.5 - 4.4.7 of the Vienna Report is assumed in much of the follow-
ing discussion.

The notation defined in the Vienna Report is basically an amalgam
of the conditional expressions of LISP [27] with notation from set
theory, symbolic logic, and arithmetic. It permits the formal defini-
tion of a class of objects which may be either elementary or composite,
i.e., composed of one or more other composite or elementary objects.
Objects are defined by predicates (e.g. the predicates is-symbol
and is-prod of section 2.1.1); by convention all predicates are
given the prefix "is-". Access to the objects of which a composite
object is composed is by means of selector functions, or selectors
(e.g. the selectors s-symbol and s-defn of section 2.1.1); by conven-
tion selectors are given the prefix "s-'. To the extent that the
abstract syntax of a programming language can be identified with
a subclass of objects of this type, the notation and concepts of
the Vienna Report may be considered a generalization of McCarthy's
work on abstract syntax [25,26].

The notation and conventions of the Vienna Report are adopted
here verbatim, except for the followiﬁg changes: Since the concept

of list is used frequently in the definitions that fallows t1Erds
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convenient to have a concise representation for the length function
of lists (cf. section 2.8.2 of the Vienna Report); for this the
absolute value symbol of mathematics is adopted, i.e., if is-1list(L)
then:
|L| = length(L)
Df

Also useful with lists is the iterated existential quantifier, defined:

Py = (3. (3p)

1 Df

wp

vk
The notation for conditional expressions (cf. section 1.3.1 of the
Vienna Report) whose conclusions e, are all predicates is extended

to include expressions of the form:
(s (30 [p;(x) > e, (0)],...)
which is equivalent in meaning to:
e (30 [p; (0] > (30 [py () A e;(®],..)

Another notation used frequently in the definitions to follow is

a quantification over all selectors (cf. 2.1.2 (3) G-Parse Trees).

The Greek letters T and o (sometimes primed or subscripted) will

be used to represent such selectors; i.e., (Vt)[...] is to be under-
stood as an abbreviation for: (Vt)[teS* > (...)], where S is the

set of all simple selectors used in the sequel (and S* is the set

of all simple and composite selectors including the identity selector).

Finally, in the definitions given here the symbol " A" will replace



52

(251)

the symbol "&'" of the Vienna Report.

The remainder of this section and section 2.2.1 comprise the
definition of the objects which represent the abstract form of
programs (parse trees) and the abstract form of transformations
(pattern trees). For economy of notation the word "tree'" will
be dropped from the predicates defining these objects, i.e., parse
trees will satisfy the predicate is-parse, etc.

To emphasize that parse trees and pattern trees may be adapted
for use with any context free phrase structure grammar G, and to
clarify which parts of their structure are independent of G, their
definitions are given in two parts: first a grammar-independent
class of objects is defined (e.g., is-parse); then a consistency
condition relating this class of objects to a given grammar G is
defined (e.g. is-G-parse). Of course, only those elements of the
set is—ﬁarse which satisfy is-G-parse represent parse trees of
a grammar G.

The following subsection introduces the class of elementary
objects used in the remaining definitions and defines production
rule and grammar in a manner compatible with the notation of the

Vienna Report. Parse trees are then defined in section 2.1.2.
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211 Elementary Objects, Productions, and Grammars

The set of elementary objects, EO, which will be used to define

parse trees and transformations is:

EO = is-symbol U is-index U {FREE} U s*

The sets is—éymbol and is-index will not be further specified.
However, the elements of is—s&mbol will be related to the symbols
of a grammar in 2.1.1 (1) cfpsg. Indices and the element FREE occur
only in pattern trees, which are discussed in section 2.2.1, and
elements of S* (compound selectors) occur only in the indefinite
skeletons of environment elements, discussed in section 2.3.1.

Before context free grammar can be defined, an object correspond-
ing to a production rule must be introduced. Such an object is

called an abstract production and satisfies the predicate is-prod:

is-prod = (<s-symbol: is-symbol>, <s-defn: is-symbol-list>)

(Recall that, by a convention of section 2.7 of the Vienna Report,
"is-symbol-1list" denotes a (possibly empty) list of objects satisfying

the predicate

'is-symbol'".) The relation of abstract productions
to production rules written in, say, Backus-Naur Form (BNF) will

be clarified after definition of context free phrase structure

grammars.
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Definition 2. 1A (1)Scfpsg

A context free phrase structure grammar (cfpsg) G is a four-—
tuple consisting of three predicates and a symbol:

G = (is-G-nonterm, is-G-term, is-G-prod, Es)
where:

is-G—nSnterm N is-G-term = {} (the empty set)

is-G-symbol = is-G-nonterm V is-G-term

is—G-;ymbol < is-symbol

is-G-prod(m) D is-prod(m) A is-G-nontermes-symbol(m)

| s-defn(m) |
A Bt is-G-symboleelem(i)es-defn(m)
i=1

is—G—nonterm(is)

The set is-G-nonterm is the set of nonterminal symbols of
G; is-G-term is the set of terminal symbols of G; is-G-prod is the
set of productions of G; and £, is the starting symbol of G. If =
is a production of G, the concrete form (in BNF) of m is given

(employing the notation introduced in section 2.2.2) by:

is-G-prod(m): R[m] => repos-symbol(m) ::=
]s—defn(w)|
JUXT repoelem(i) os-defn(m)
i=1

The required relation between productions written in BNF and abstract

productions is thus established.
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Ryl 2 Parse Trees

The parse trees representing derivations (and subderivations)
in the grammar G are defined in this section. The general class
of parse trees irrespective of a particular grammar G are defined

first.

Definition 2.1.2 (1) Parse Trees
A parse tree is an object satisfying the predicate is-parse:

is-parse = is-final-parse V is-prod-parse
is-final-parse = (<s-symbol: is-symbol>)

is-prod-parse = (<s-symbol: is-symbol>, <s-sub-list: is-parse-list>)

The definition of the consistency condition relating a parse
tree p to a specific cfpsg G is facilitated by defining a function
immed-prod which extracts what may be called the "immediate production'
of p, i.e., the production which permits khe derivation of s;sub-
list(p) from s-symbol(p). The function immed-prod will later also
be applied to pattern trees; therefore its full definition for both

parse and pattern trees is given here. (The predicates for pattern

trees are defined in section 2.2.1.)

Definition 2.1.2 (2) Immediate Productions
The immediate production of a parse tree (or pattern tree) is

given by immed-prod(p), where is-parse(p) V is-pat(p):
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immed-prod(p) =
(is-prod-parse(p) V is-prod-pat(p) ~
u0(<s—symbol: s—-symbol(p)>,

]s-sub—list(p)| ;
<s—-defn: TETESHE s-symboloelem(i)os—sub—llst(p)>),

i=1
is-final-parse(p) V is-final-pat(p) = u,(<s-symbol: s-symbol(p)>),
is-indef-pat(p) > Q)

It should be clear that immed-prod satisfies:
is-prod-parse(p) V is-prod-pat(p) D is-prod(immed-prod(p))

In case p is a final parse (or pattern), immed-prod(p) is just the
symbol of p. This convention simplifies certain later definitioms.
Now it may happen that if is-parse(p), and G is some cfpsg,
is-G-prod (immed-prod(p)). This observation is the basis for the
definition of the consistency condition relating parse trees to a
particular grammar G. (Recall that teS*, i.e., T ranges over all

simple and composite selectors, including the identity selector.)

Definition 2.1.2 (3) G-Parse Trees
Let G be a cfpsg. Then a G-parse-tree is a parse tree satisfying
the consistency condition Zs-G-parse(p):
is-G-parse(p) = is-parse(p)A
(V1) [ (is-final-parse®t(p) D is-G-termos-symbolet(p))

A(is-prod-parsect(p) O is-G-prodeimmed-prodet(p))]

This concludes the definition of parse trees. One should note
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that if is-G-parse(p) A s-symbol(p) = Es then p is a derivation tree

in G in the usual sense. Furthermore, the concrete representation

(cf. section 2.2.2) of p is a string in L(G), the language generated

by G.

b7
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2.2 Syntax of Intra-Grammatical Transformations

In this section the syntax of IGTs will be defined. The defini-
tion consists of two main parts: the definition of the abstract form
of IGTs, and the definition of their concrete form. The definition
of the abstract form is further divided into the definition of
G-pattern trees (in a manner analogous to the definition of G-parse
trees), the definition of G-IGTs, and the definition of aggregates

of IGTs.
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% Abstract Form of Intra-Grammatical Transformations

Since the tree structures which are the abstract forms of the
8Ds and SCs of transformations have many features in common, it is
convenient to define a single class of tree structures, the pattern
trees, of which both sd trees and sc trees are subclasses. This
approach clarifies both the similarities and differences between sd
trees and sc trees. Note that because the SC of a transformation
may contain subtransformation sequences, pattern trees must of

necessity contain them; they are defined in definition 2.2.1 (5).

Definition 2.2.1 (1) Pattern Trees
A pattern tree is an object satisfying the predicate is-pat:

is-pat = is-final-patV is-prod-patV is-indef-pat
is-final-pat = (<s-symbol: is-symbol>,
<s—-index: is-index V is-0>,
<s-subtrseq: is—subt}seq>)
is-prod-pat = (<s-symbol: is-symbol>,
<s-index: is-index V is-0>,
<s-sub-list: is-pat-list>,

<s-subtrseq: is-subtrseq>)

is-indef-pat (<s-symbol: is-symbol>,

<g-index: is-index V is-Q>,
<gs-indef-list: is-pat-or-FREE-nlist>,
<s-subtrseq: is-subtrseq>)

is-pat-or-FREE = is-pat V is-FREE

There are thus three kinds of pattern trees. Final pattern trees

and production pattern trees are analogous to final parse trees and
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production parse trees; indefinite pattern trees represent indefinites.
The suffix "-nlist" used in the definition is the same as the suffix
"_list," except that it indicates a non-empty 1ist, di.e., is-indef—
pAE(C)RS |s—indef—1ist(t)| > 1. FREE is, of course, the free symbol.
An auxiliary function and predicate will simplify discussions
involving pattern trees. (They will also be applied to environment

elements, defined in section 2.3.1):

Definition 2.2.1 (2) Variable
The variable of a pattern tree (or environment element) is the
object composed of its symbol and index (if any), given by var(t),

where is-pat(t) V is-env-elet(t):

var(t) = u0(<s—symb01: s-symbol(t)>, <s-index: s—index(t)>)

Definition 2.2.1 (3) Indexed
A pattern tree (or environment element) is said to be indexed
(or to have an indexed symbol) if it satisfies the predicate

is-indexed(t), where is-pat(t) V is-env-elet(t):
is-indexed(t) ==1is-Qos-index(t)

Before the consistency condition for a pattern tree can be stated,
it is necessary to introduce some definitions pertaining to subtrans-
formations. Since the consistency conditions for subtransformations

are a part of those for pattern trees and transformations, only the
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general objects representing subtransformations will be defined now:

Definition 2.2.1 (4) Transformation
A transformation is an object satisfying the predicate is-tr:

is-tr = (<s-sd: is-pat>, <s-sc: is-pat>)

Definition 2.2.1 (5) Subtransformation Lists and Sequences

A subtransformation list is an objeet satisfying the predicate
is-subtrlist:

is-subtrlist = is-tr-list

A subtransformation sequence is an object satisfying the predicate
is-subtrseq:

is-subtrseq = is-subtrlist-list

The consistency condition for pattern trees can now be stated.
»

It is rather more complex than that for parse trees and consists

of five main parts. (For the definition of immed-prod see 2.1.2

(2) Immediate Production.)
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Definition 2.2.1 (6) G-Pattern Trees

Let G be a cfpsg. Then a G-pattern tree is a pattern tree satis-

fying the consistency condition is-G-pat(t):

is-G-pat(t) = is-pat(t) A
(v1) [ (is-final-patet(t) D is-G-symboles-symbolet(t))
A (is-prod-patet(t) D is-G-prodeimmed-prodet(t))
A(is-indef-patot(t) o is-G-indefet(t))
A (is-trot(t) D is-G-sdes-sdet(t) A is—-G-sces-scoT(t)
A s—symboles-sdet(t) = s—symboles-sceT(t))

|s—subtrseqor(t)| |elem(i)os—subtrseq01(t)|

A (is-patet(t) 2 Et Et
i=1 j=1

s-symbolos-sdoelem(j)oelem(i)°s-subtrseqor(t) =
s-symbolet(t))]
is-G-indef (t) = is-G-nontermes-symbol(t)
|s-indef-1list(t) |-1
NCBEE — (is-FREEcelem(i) os-indef-1list (t)

i=1
A is-FREEcelem(i+l) os—indef-list(t))

is-G-sd(t) = is-G-pat(t) A (V1) [is-patet(t) D*
|s-subtrseqot(t) | = 0]

is-G-sc(t) = is-G-pat(t)A
(V1) [(is-indexedot(t) D 1 is-prod-patot(t))
A (is-prod-patet(t) D is-indexedot(t)

V is-G-termes-symbolot(t))]

The following aspects of the definition of is-G-pat are note-
worthy: Final patterns, unlike final parses, need not have as their
symbol a terminal symbol of G. The SD and SC of any transformations

occurring in a G-pattern tree (which must, of course, be in a sub-
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transformation sequence) must have the same symbol, and the symbols
of all SDs of all subtransformations of all subtransformation lists
of a subtransformation sequence of a particular pattern subtree must
have the same symbol as that pattern subtree. The definition of
is-G-indef requires that the symbol of an indefinite be nonterminal,
and that no two free symbols occur adjacent to one another in the
indefinite list.

The predicate is-G-sd (the sd condition) characterizes the sub-
class of pattern trees (the sd trees) which can represent the SD of
a transformation as those which do not contain any subtransformations.
The predicate is-G-sc (the sc condition), which characterizes the
sc trees, is more complicated. It requires: all production pattern
trees must be unindexed; all indefinite pattern trees must be indexed
(since the symbol of an indefinite may not be terminal); and all final
pattern trees either must be indexed or tPeir symbol must be terminal.
These restrictions, together with those placed on transformations,
insure that the result of applying a transformation to a G-parse tree
is again a G-parse tree.

The consistency condition that a transformation must satisfy in
order to be an IGT will now be considered. It must guarantee that
when any transformation in the IGT applies, there is an "appropriate"
parse'tree for every substitution called for by an indexed symbol
in the SC of the transformation. Appropriate parse trees can come
from three sources: from having been matched in the SD of the trans-

formation, from having been generated (if the symbol is generable),
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or from having been matched or generated in a transformation containing
the transformation containing the symbol (if the symbol is in a
subtransformation). Thus the consistency condition for an IGT must
embody the scope rules for subtransformations, which make it quite
complex. Some additional nomenclature will simplify the discussion
somewhat.

A predicate characterizing the (possibly empty) subset of
is—G-;ymbol which is the set of generable symbols is required, and
this predicate is is-generable(E), where is-G-symbol(£) . The user of
the IGT system is assumed to provide, along with a transformation
set sequence, a function generate(g) and the predicate is-generable,
which characterizes the domain of generate. The only constraint

placed on generate is that it must satisfy*:
is—generable(£) D A(p) (is-G-parse(p) A s-symbol(p) = £) (generate(£))

The scope of a transformation can be characterized as follows:
Let the local variables of a transformation be the variables of all
indexed patterns remaining in that transformation after all subtrans-
formation sequences in it have been removed. Then the scope of a
transformation or subtransformation is the union of the set of the
variables of the indexed patterns in its SD and the sets of local

variables of all transformations containing it.

*

The A-expression is used to state this contraint because generate may
be so constructed that successive calls on it with the same argument
generate different parse tree, i.e., 'generate may have side effects.
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In these terms, the consistency condition for an IGT can be
restated. Every transformation in an IGT satisfies: for every
indexed indefinite pattern in the SD of a transformation, there
is no other occurrence of a pattern with its variable in an SD in
the scope of that transformation; for every indexed nonindefinite
pattern in the SC of a transformation, there is a pattern with the
corresponding variable in the scope of that transformation, or else
the symbol of the pattern is generable; and for every indefinite
pattern in the SC of a transformation, there is a suitable indefinite
pattern with the corresponding variable in an SD in the scope of
that transformation.

The chief problem then, is to define the scope of a transforma-
tion. This may be done by considering "factorizations' of composite
selectors. A factorization of a composite selector 1eS* is a collec-
tion of composite selectors (factors) 01%""0nes* such that
T 2% < ~0 00 (Note that composition of selectors is non-commutative,
so that the order of the factors is important.)

Consider then a subtransformation ti contained in the SC of a
transformation t, and suppose that 1eS* selects an indexed nonindefi-
nite pattern in ti' The requirement that there be a pattern having
the corresponding variable within the scope of ti may be expressed

using factorizations of selectors, as:
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(31")[t' # 1 A varet'(t) = varot(t)
A(30)(301)(302)[r = oloc/\ t' = 0,20
Nea@=Hlod)i( 30{)( 30;)[01 = oioc' ANC N o;oc' A o' # 1d]
A ( 303)( Eli)[cZ = oaoelem(i)]
A (=( 303)( 30“)[01 = cqos—subtrseqooa]
2 ( 303)( 30q)[T' = c“os—sdoos]
A =( Jo3)(3oy) oy = o,es-subtrseqeos])]]

This expression may be made more tractable by introducing some

predicates on selectors, two of which will also be useful later.

Definition 2.2.1 (7) Contained and Head

A composite selector o is contained in (is_a head of) a composite
selector 1 if o and 1 satisfy <s-contained (o,t), (is-head(c,t)) where
oeS*, tes*:

is-contained(o,t) = (.301)( 302)[T = 02°0001]

is-head(o,1) = ( 301)[1 = 0100]

Two other useful predicates are i{s-in-sd(1) and is-in-sc(t), defined

for tes*:

is-in-sd(t) { 301)( 302)[1 = czos—sdocl]

( 301)( 302)[T = 0,08-sce0,
A-1is—contained(s—subtrseq,02)]

is-in-sc(T)

Now the predicate is-in-scope(t',t) determining when a selector

A\l

T' is in the scope of a selector T may be defined:
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is-in-scope(t',t) = T'#1 A (30)( 301)( 302)[T=01ooA o' = 0,00
A 30')[1s—head(c',ol) Ais—head(o',cz) Nol s Td]
A ( 31)[is—head(e1em(i),02)]
A( is—contained(s-subtrseq,01) D is-in-sd(t')

Aﬂis-contained(s-subtrseq,02))]

With the predicate is-in-scope the consistency condition defining
IGTs can be conveniently stated (cf. definition 2.2.1 (6) for is-G-sd

and is-G-sc):

Definition 2.21} (8) IGT
Let G be a cfpsg. An intra-grammatical transformation (IGT) over

G is an object satisfying the predicate 71s-G-IGT(t):

is-G-IGT(t) = is-tr(t) A is-G-sdes-sd(t) A is-G-scesc(t)
A s-symboles-sd(t) = s-symboles-sc(t)
A (V1) [(is-in-sdet(t) A is-indef-patot(t) A is-indexedet(t)
> —(31') [is-in-sdet' (t)dis-corresp-pat(t',T,t)])
A (is-in-scet(t) D [is-final-patet(t) A is-indexedet(t)
S(31')[is-corresp-pat(t',T,t)]
Vis-generableos-symbolet(t)]
A [is-indef-pato T(t)

5(31")[is-corresp-indef(t',1,t)]])]

is-corresp-pat(t',t,t) = (varet'(t) = varot(t) A is-in-scope(t',T))

is-corresp-indef(t',t,t) = is-corresp-pat(t',T,t) Ais-in-sd(t')

Ais-indef-patot'(t) A |s-indef-listet'(t)| = |s-indef-listot(t) |
|s-indef-list°T(t)|
Et s-symboleelem(i) °es-indef-listot'(t)
i=1

= g-symboleelem(i)os-indef-listot(t)

67
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Note that the predicate is-corresp-indef requires that, for an indefi-
nite pattern in an sc tree, there be a pattern with the corresponding
variable in an SD, and it must also be indefinite. Furthermore, the
sequence of symbols in the indefinite lists of both patterns must be
the same.*

The definition of the various aggregates of transformations com~-

pletes the specification of the abstract form of IGTs.

Definition 2.2.1 (9) Transformation Lists
Let G be a cfpsg. A transformation list is an object satisfying

i8-G-trlist(t):

is-G-trlist(t) = is-G-IGT-list(t) A [[t]| > O
[E st
> Et s-symboles-sdeelem(i)(t) = s-symboles-sdeelem(i+l) (t)]
i=1

If s-symboles-sdeelem(1l)(t) = £, t is sometimes called a g-transforma-

tion list.

Definition 2.2.1 (10) Transformation Sets

Let G be a cfpsg. A transformation set is an object satisfying

18-G-trset(S):

*

Actually, in this condition s-symboleFREE = Q; however, since the
%engths of the two indefinite lists must be the same and s-symbol
is defined for all other objects which can occur in the list,

s-symboloelem(i)os-indef-listet(t) ='Q = is-FREEcelem(i)os-indef-listot(t)
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is-G-trset(S) = (VR&)[ReS D is-G-trlist(L) A |£| >0
A ( 32')[2'eS A s-symbolos-sdoelem(1l) (') =
s-symbolos—-sdoelem(1) (2)]]

Definition 2.2.1 (11) Transformation Set Sequences

Let G be a cfpsg. A transformation set sequence is an object

satisfying is-G-trsetseq:
is-G-trsetseq = is-G-trset-list
The definition of the abstract form of IGTs is thus complete.

The following section defines a concrete representation for IGTs

based on this abstract form.
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2089 Concrete Form of Intra-Grammatical Transformations

The abstract forms of parse trees and 1GTs, while necessary for
the definition of the semantics of transformations, are rather cumber=
some and not well adapted to writing programs and transformations.
Therefore concrete forms, which are the forms in which programs
and transformations are normally written and displayed (cf. section
1.1), are introduced. These concrete forms are defined by a represen-—
tation function which interprets abstract forms to produce correspond-
ing concrete forms.

The concept of representation system and the notation of section
3.2 of the Vienna Report provide the basis for constructing the
representation function. The representation system developed here
is the 5-tuple: <A,T,{R},R,R> where: A is the abstract syntax
described in sections 2.1.1, 2.1.2, and 2.2.1; T is the set of

represented symbols®:
T = rep(is-symbol U is-index) U {'sn','sc',==>,{,},'IND',",§}

(The function rep will not be specified except to say that it

is a 1-1 mapping between symbols and indices and their written repre-
sentations); R is the single nonterminal name of the representation
system (the representation function); and R is the conditional replace-

ment schema defining R, given below.

*
In the computer implementation of IGTs, "{" is represented by "@",
and "}" by "%" (cf. sections 3.1.2 and 3.2.2).
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Since lists occur frequently in the abstract syntax of parse trees
and IGTs, it is worthwhile to introduce an abbreviated notation for the
representation of the elements of a list; this is the juxtaposition

operator JUXT, defined when is-list(L). (X is the empty symbol.)
IL|
JUXT Rlelem(i)(L)] = (|L| =0 > 1,
i=1 DF
L] > 0 > Rlelem(1)(L)]...R[elem(|L|) (L)1)
Definition 2.2.2 (1) Representation Function

The representation function R is defined for composite objects by

the conditional replacement schema R:

|t]
is-G-trsetseq(t) V is-subtrseq(t): R[t] => JUXT R[elem(i)(t)]

i=1
n n
is-G-trset(t) A (Et is-G-trlist (li)) RS E= {El,...,ln}-A 2 = LIST Zi:
i=1 i=1
|2
R[t] = { JUXT Rlelem(i)(2)] }
i=1

»

is-G-trlist(t) A |t| > O:

|t |
R[t] => repos-symboles-sdeelem(1l) (t) { JUXT R[elem(i)(t)] }
i=1
|t]
is-subtrlist(t): R[t] => { JUXT R[elem(i)(t)] |
i=1

is-tr(t): R[t] => 'SD' R[s-sd(t)] ==> R[s-sc(t)] 'sc'

is-final-pat(t) V is-final-parse(t):

R[t] => repes-symbol(t) R[s-index(t)] R[s-subtrseq(t)]

is-prod-pat(t): R[t] => repos-symbol(t) R[s-index(t)]

: ls—sub—list(t)|
{ JUXT R[elem(i)os-sub-list(t)] } R[s-subtrseq(t) ]
i=1

71
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is—prod—pat(t)A-ﬁ(is—indexed(t) V|s—subtrseq(t)| > 0) Vis-prod-parse(t):
|s—sub—list(t)| :
R[t] => JUXT Rlelem(i)es-sub-list(t)]
i=1

is-indef-pat(t): R[t] => repos-symbol(t) R[s-index(t)]

|s—indef~1ist(t)l
{ v’ JUXT Rlelem(i)os—indef-list(t)] }
i=1

R[s-subtrseq(t)]

is-indef-pat(t) A ( 31) [is-FREEcelem(i)os-indef-list(t)]:

R[t] => repos-symbol(t) R[s-index(t)]

|s-indef-list(t) |
{ JUXT Rlelem(i)os-indef-list(t)] } R[s-subtrseq(t)]
i=1

is-index(t): R[t] => " rep(t) "
is-FREE(t) : R[t] => ?

is-Q: R[t] => A

One should note two points about the representation function R:
(1) The abstract forms of certain IGTs have more than one concrete
form; when this is true, they are all equivalent. (2) When R is
applied to a Es—parse tree of a cfpsg G, the result is a string in

the language generated by G:

is-G-parse(t) A s-symbol(t) = Es:) R[t] € L(G)
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2.3 Semantics of Intra-Grammatical Transformations

The semantic definition of IGTs comprises two principal parts:
the specification of the result of applying a transformation to a
parse tree, and the specification of the sequencing of aggregates
of transformations and subtransformations. Since the application
of a transformation necessarily involves applying the subtransformation
sequences in it, these two specifications are mutually dependent.

In addition to defining these two aspects of the semantics of
IGTs, this section also introduces the concept of an enviromment.
Basically, the environment of an IGT is the information which, in
addition to that in the SD and SC of the IGT, relates the transformed
parse tree to the parse tree to which the transformation is applied.
In an algorithmic implementation of IGTs, the environment is con-
structed during matching of the SD of the IGT against the parse tree
and is used to look up the values of variables in the SC during
construction of the transformed parse tree. However, in the following
definition of the semantics of IGTs, no attempt is made to specify
the computation of an environment, but rather the existence of an
environment relating two parse trees and a transformation is taken
as the condition for that transformation to apply to one parse tree
to produce the other. Since for indefinites more than one suitable
environment may exist, this section concludes with a discussion of
an order relation for environments, which permits the selection of
a unique environment (the minimal, or left-most one) for each applica-

tion of a transformation to a parse tree.
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2.3.1 Environment of an Intra-Grammatical Transfoymation

An environment of an IGT is a set of environment elements,
each of which consists of a variable (in the sense of definition
2.2.1 (2)), a parse tree (the value of the element), and possibly
an indefinite skeleton. The indefinite skeleton is a list of selectors
which indicate the nodes in the parse tree matched by the non-
FREE elements of the indefinite list of a corresponding indefinite
pattern. In this way the tree structure represented by the FREE
symbols of an indefinite pattern is assured to be the same for
the same variable in the SD and SC.

Following the pattern of previous definitions, the objects
representing environments are first defined, and then certain consis-
tency conditions, which primarily define the semantics of FREE symbols,

are placed on them.

Definition 2.3.1 (1) Environments and Environment Elements
An environment is a set satisfying the predicate Zs-env; an

environment element is an object satisfying the predicate is-env-elet:

is-env(E) = (Ve)(e € E D is—env-elet(e))
is-env-elet = (<s-symbol: is-symbol>,
<s-index: is-index Vis-Q>, <s-parse: is-parse>,
<s-indef-skel: is-sel-or-s-FREE-nlist Vis-0>)
is-sel-or-s-FREE = is-sel V is-s-FREE

is—;el =

is-s-FREE(s) = (Vo) [1s-FREEes (o) ]
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Note that s-FREE is a constant selector, having as value the elementary

object FREE regardless of the object to which it is applied. (By a
convention of the Vienna Report (section 2.3) s-FREE is not an element
of S*.)

The consistency condition for environment elements is rather
complex, inasmuch as it helps to define the semantics of indefinites
(cf. section 1.1.3). The condition must describe the following rela-
tions: the subtree matched by a non-FREE element left of another
in the indefinite list must be left of the subtree matched by the
other; a non-FREE element at the left (right) end of an indefinite
list must match a leftmost (rightmost) subtree; and adjacent non-
FREE elements must match adjacent subtrees (in the sense that the
terminal strings of their subtrees are adjacent). Predicates charac-
terizing these relationships can be defined in terms of the selectors
accessing the subtrees (and their factorizations).

»

The subtree selected by T, is left of the subtree selected
by (5 if they satisfy the predicate is—Zef%-of(Tl,Tz) where T, € SEA
*,

Ty £ 9

g

is—left—of(rl,Tz) =0 Fa)( 301)( 3o, ( 311)( 3i,)
[T] = o,celem(i))e0 A 1, = 0y0elem(i,) o0 S i,]

The subtree selected by t in p is a leftmost subtree of p if they

satisfy the predicate is-leftmost (t,p) where T € s* A is-G-parse(p):

is~-leftmost(t,p) = (Vo) (Vo') (Vi)[1 = o'°elem(i)coDi=1]
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The subtree selected by T in p is a rightmost subtree of p if the

predicate is-rightmost(t,p) is satisfied, where T € s* A is-G-parse(p):
is-rightmost(t,p) = (Vo) (Vo') (Vi) [t = o'eelem(i)eo D i = |a(p)|]

(Note that the argument p is not used in is-leftmost; this is an
artifact of the notation for lists.) The subtree selected by L5 is
adjacent to that selected by T, in p if the predicate
is—adﬁacent(rl,rz,p) is satisfied, where i SN e s* A

is-G-parse(p):

is—adjacent(rl,szp) = (3o)( 301)( 302)( 2hab))
[T1 = oloelem(i)oc A = ozoelem(i+l)°o
A is-rightmost (0, elem(i)°a(p))
A is-leftmost (0,, elem(i+l)ea(p))]

With these definitions, the consistency condition for environment

elements becomes:
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Definition 2.3.1 (2) G-Environment Elements
A G-environment element is an environment element satisfying the

consistency condition Zs-G-env-elet:

is-G-env-elet(e) = is-env-elet(e) A is-G-parseos-parse(e)
As-symbol(e) = s-symboles-parse(e)\ [~is-Qos-indef-skel(e)

|s-indef-skel(e) |
e Et (—is-s-FREEcelem(i) es-indef-skel(e) o
i=1

( 30i)[0i = elem(i) es-indef-skel(e)
Ais-parseooios—parse(e)

A(i=1 D is-leftmost (oi,s—patse(e)))

A(i = |s-indef—ske1(e)|3 is—rightmost(ci,s—parse(e)))
i-1
AN Et (1 is-s-FREEcelem(j)os-indef-skel(e)

j=1

D[is-left-of (elem(j) cs-indef-skel(e), ci)
A(j=i-1Dis-adjacent(elem(j)os-indef-skel(e),
oi,s—parse(e)))])])]

; 9 . . 2
Finally, a G-environment is an environment in which no two indexed

elements have the same variable:

Definition 2.3.1 (3) G-Environment
A G-environment is an environment satisfying the consistency

condition Zs-G-env:

is-G-env(E) = is-env(E) A (Ve)[e € E D is-G-env-elet(e)
A(is-indexed(e)> = ( 3e')[e' € E A var(e') = var(e)])]

L
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The introduction of two additional predicates relating environ-
ment elements to parse trees and indefinite patterns, respectively,

complete the discussion of environments:

Definition 2.3.1 (4) Instance
A parse tree p is an instance of an environmment element e if the
predicate is-instance(p,e,t) is satisfied, where is-G-parse(p) A

is-G-env-elet(e) A is-pat(t) (cf. definition 2.2.1 (7) for is-head):

is-instance(p,e,t) = (V1) [is-parseot(p) N (—is-indef-pat(t)V
= ( 3i) [is-head(elem(i)eos-indef-skel(e),T)])

O immed-prodet(p) = immed-prodetes-parse(e)]

Basically, a parse tree p is an instance of an environment element
e if p = s-parse(e) except, if t is indefinite, for the subtrees
selected by non-FREE elements of s-indef-skel(e). Note that for

nonindefinite patterns, the definition reduces to p = s-parse(e).

Definition 2.3.1 (5) Compatible

An environment element is compatible with an indefinite pattern
if the predicate is-compat(e,t) is satisfied, where is-G-env-elet(e)A

is-indef-pat(t):

is-compat(e,t) = [var(e) = var(t) A is-Qos-indef-skel(e)

A|s-indef-skel(e) | = |s-indef-1list(t) |
|s-indef-1ist(t) |
A Et (t 301)[01 = elem(i)os-indef-skel(e)
i=1

As—symbolocios—parse(e)

= s-symboleelem(i)os-indef-1list(t)]]
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Thus an environment element corresponding to an indefinite pattern

is compatible with it provided the element has an indefinite skeleton
with FREE elements in the same positions as the FREE symbols in the
indefinite list, and whose non-FREE elements select subtrees whose
symbols are the same as those of their corresponding subpatterns in

the indefinite list.
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2.3¢2 Predicates Defining the Semantics of Transformations

The predicate which defines the result of applying a single IGT
to a parse tree necessarily uses predicates defining the semantics
of subtransformation sequences (which may be applied to subtrees of
the transformed parse tree) and also those defining the semantics
of transformation sets (which are reapplied to the transformed parse
tree in bottom-up order). Therefore, these predicates, which define
the sequencing rules discussed in sections 1.1.2 and 1.1.4, will be
defined first. One may keep in mind that the predicate is-tr-result
(p2,P1,t,E,S) (definition 2.3.2 (8)) is true if p, is the result of
recursively reapplying the transformation set S to the result of
applying the transformation t to P> with the environment E.

The first predicate to be defined is the one which characterizes
the result of applying a transformation list. It employs the predi-
cate is-indef-min (defined in section 2.3.3) to establish the unique-
ness of the environment (with respect to its indefinite elements)
used by is-tr-result. For the purpose of understanding the definitions
of this section, is-indef-min may be taken to be true for any envi-
ronment E. (Note that conditional expressions of the type discussed
in section 2.1 are used in this and several of the following defini-

tions.)
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Definition 2.3.2 (1) Trlist Result

A parse tree p, is the result of applying a transformation list
to a parse tree p; if the predicate is-trlist-result (p,,p;,%,S)
is satisfied, where is-G-parse(p,) A is-G-parse(p;) A is-G-trlist(2)A

is-G-trset(S):

is-trlist-result(p,,p;,%,8) =
(2] = 0> p; = py,
( BP)B 3E) [is-G-parse(p) A is-G-env(E)
A is—indef—min(E,pl,head(l),{})
A is—tr—result(p,pl,head(l),E,Sﬂ +> pp = pl,
T + is-trlist-result(p,,p;,tail(2),S))

Basically, is-trlist-result is true if p, is the result of applying
the first transformation in the transformation list that applies to
P15 or, if none applies, if p, = p;.

The next two predicates define the result of applying a transfor-
mation set to a parse tree. The first characterizes the result of
applying a transformation set to the first level of the parse tree,
while the second defines the result qf applying the set throughout the

tree in bottom-up, left-to-right order (cf. section 1.1.2).

Definition 2.3.2 (2) Trset Result
A parse tree p, is the result of applying a transformation set
to a parse tree p; if the predicate is-trset-result(p,,p;,S) is

satisfied, where is-G-parse(p;) A is-G-parse(p;) A is-G-trset(S):
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is-trset-result(p,,p;,S) =
(C 32)[2 € S N s-symboles-sdeelem(1l) (£) = s-symbol(p;)

+ is-trlist-result(py,p1,%,S)],

RN p o R=p )

Definition 2.3.2 (3) Trset Recursive Result

A parse tree p, is the result of the recursive application of a
transformation set throughout a parse tree p; if the predicate
is-trset-rec-result(p,,p,,S) is satisfied, where is-G-parse(pj)A

is-G-parse(p;) A is-G-trset(S):

is-trset-rec-result(p,,p;,S) =
(is-final-parse(p;) D is-trset-result(py,p;,S))
A(is-prod-parse(p;) 2 ( 3p) [is-G-parse(p)

A |s-sub-1ist(p)| = | s=sub-1list (p;) |
|s—sub-list(p;) |
A Et is-trset-rec-result (elem(i)eos-sub-1list(p),
i=1

elem(i)os—sub—list(pl),Sﬂ
A is-trset-result(p,,p,S)])

The result of applying a transformation set sequence is defined
in terms of the recursive application of each transformation set in

the sequence to the result of its predecessor:

Definition 2.3.2 (4) Trsetseq Result
A parse tree p is the result of applying a transformation set
sequence to a parse tree p; if the predicate is-trsetseq-result(p,pg,q)

is satisfied, where is-G-parse(p) A is-G-parse(pg) A is-G-trsetseq(q):
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lql lal
is-trsetseq-result(p,pg,q) = | 3 py| [(Et [is—G—parse(pi)
i=1 i=1

A is—trset-rec-result(pi,pi_l,elem(i)(q))]) ANp= plql]

Finally, the function which returns the result of applying a

transformation set sequence to a parse tree is defined as follows:

Definition 2.3.2 (5) Transform
The result of applying a transformation set sequence to a parse
tree is the value of a function transform(p,q), where is-G-parse(p)A

is-G-trsetseq(q), which satisfies:
is-trsetseq-result(transform(p,q),p,q)

Note that transform (p,q) always has a value, since if no transforma-
tion in the sequence ever applies, is-trsetseq-result(p,p,q).

The two predicates which define sequencing for subtransformations
are quite similar to is-trlist-result and is-trsetseq-result. How-
ever, the Markov sequencing must be explicitly built into is-subtrlist-
result, since it does not arise implicitly from recursive reapplication
as it does for transformation lists. Moreover, is-subtrlist-result
must also pass to the subtransformations the environment of the trans-
formation in which they occur, augmented by an environment containing
elements corresponding to variables occurring in the subtransformation

but not in the transformations containing it.
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Definition 2.3.2 (6) Subtrlist Result

A parse tree p, is the result of applying a subtransformation
list to a parse tree p, if the predicate is-subtrlist-result
(pz,pl,l,E,l',S) is satisfied, where is—G—parse(pz) A is-G-parse(p)A

is-subtrlist(2) A is-G-env(E) A is-subtrlist(2') A is-G-trset(S):

is—subtrlist-result(p2,pl,1,5,2',S) =
(|t =0 +p, =p,,
(3p)[( 3E") [is-G-parse(p) A is-G-env(E' U E)
Ais-indef—min(E',pl,head(k),E)
Ais—tr-result(p,pl,head(l),E' WSELS) ]
- is-subtrlist—result(p2,p,l',E,l',S)],
) is—subtrlist—result(p2,pl,tail(l),E,l',S))

Definition 2.3.2 (7) Subtrseq Result

A parse tree p is the result of applying a subtransformation
sequence to a parse tree p, if the predicate is-subtrseq-result
(p,po,q,E,S) is satisfied, where is-G-parse(p) A is—G—parse(po)A

is-subtrseq(q) A is-G-env(E) A is-G-trset(S):

lal la|

E| P (Et [is-G-parse(p.)
=1 il =
Ais-subtrlist-result(pi,pi_l,elem(i)(q),E,elem(i)(q),S)])

e plqil

The definition of the sequencing of transformations and subtrans-

is—subtrseq—result(p,po,q,E,S) =

formations is now complete, and only the definition of the semantics
of an individual transformation, via the predicate is-tr-result,

remains. This predicate is defined in terms of one further predicate,
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is-match; is-tr-result requires that the parse tree being transformed
match the SD of the transformation and that the transformed parse

tree match the SC of the transformation.

Definition 2.3.2 (8) Tr Result

A parse tree p; is the result of applying an IGT to a parse tree
p; if the predicate Zs-tr-result(p,,p),t,E,S) is satisfied, where
is-G-parse(p;) A is-G-parse(p;) A is-G-IGT(t) A is-G-env(E) A

is-G-trset(S):

is-tr-result(p,,p;,t,E,S) = ( 3p)[is-G-parse(p)
Ais-match(p;,s-sd(t),E,S) A is-match(p,s-sc(t),E,S)
Ais-trset-result(py,p,S)]

Definition 2.3.2 (9) Match

An SD or SC of a transformation matches a parse tree if the
.

recursively defined predicate is-match(p,t,E,S) is satisfied, where

is-G-parse(p) A (is-G-sd(t) V is-G-sc(t)) A is-G-env(E) A is-G-trset(S):

is-match(p,t,E,S) = (3p")(3p")(3Te)
[is-G-parse(p") A is-G-parse(p')
As-symbol(p) = s-symbol(p') = s-symbol(p') = s-symbol(t)
A [is-indexed(t) V is-indef-pat(t) D eeE

Avar(e) = var(t) A is-instance(p',e,t)]

A [is-prod-pat(t) D |s—sub—list(p')| = |s—sub—list(t)|
Is—sub-list(t)l
A Et is-match(elem(i)os-sub-list(p'),
i=1

elem(i)es-sub-1ist(t),E,S)]
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A [is-indef-pat(t) 2 is-compat(e,t)

ls—indef—list(t)| L
Et (—1is—FREEcelem(i)os-indef—llst(t)

i=1

=( 30i)[oi = elem(i)os-indef-skel(e)

A

A is-match(ci(p'), elem(i)os—-indef-list(t),E,S)])]

A[is-prod-parse(p') D Is—sub—list(p")] = ls—sub—list(p')|
| s-sub-list(p") |
A Et is-trset-rec-result
i=1

(elem(i)es-sub-list(p"), elem(i)es-sub-1list(p'),S)]

Ais-subtrseq-result(p,p',s-subtrseq(t),E,S)]

This rather lengthy recursive definition may be understood as
follows: There must exist two parse trees satisfying some obvious
restrictions, which act as '"intermediate results." If the pattern
is indexed or indefinite there must also exist an environment element
corresponding to it, (var(e) = var(t)), and the parse tree p' must be
an instance of it. (Recall that for non-indefinite patterns, is-
instance (definition 2.3.1 (4)) represents equality.)

The recursive phase of the definition determines that the subtrees
of the parse tree p' match the subtrees of the pattern tree. (But if
the pattern is final no further restrictions are placed on the
remainder of p'.) For a production pattern the recursion is on the
elements of the sub-lists of p' and t; for an indefinite pattern, e
must be compatible with t (cf. definition 2.3.1 (5)), and the recursion
is on the non-FREE elements of the indefinite list of t, descending
in p' all the way to the subtrees selected by the corresponding

elements of the indefinite skeleton of e.
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The next phase of the definition determines that the subtrees
(if any) of p'" are the result of applying the transformation set S
recursively to the respective subtrees of p'. The final phase then
consists of checking that p is the result of applying the subtrans-
formation sequence of t to p". (If there is no subtransformation
sequence of t, this becomes p = p'".)

The following points should be noted about this definition.
First, when is-match is applied to the SD of a transformation, the
last two phases are vacuous. This is obvious for the subtransforma-
tion sequence phase, since the consistency condition is-G-sd permits
no subtransformation sequences in the SD. That it is also true for
the transformation set phase is a consequence primarily of the defini-
tions of is-trset-rec-result and is-match: together they insure that
before any transformation is applied at a given point in a parse
tree, all its subtrees have been fully transformed by the transforma-

.
tion set. This redundancy in the definition is tolerated to retain
the symmetry of employing a single match function for both the SD and
SC of a transformation.

Second, there is also some redundancy in the transformation set
phase when is-match is applied to the SC of a transformation. That
is, for non-indefinite patterns one may employ is-trset-result in
place of is-trset-rec-result. This is clear for production patterns,
since is-trset-result will have been applied to the subtrees as a
consequence of the recursion of is-match. For final pattermns, it is

a consequence of the definition of is-G-sc, since a non-final parse
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tree corresponding to a final pattern tree must appear also in the
parse tree matched by the SD (or else be generable), hence it must
have already been fully transformed (assuming generated parse trees
are fully transformed). Even for indefinite patterns it is not
necessary to perform a full recursive reapplication of the transfor-
mation set, since it can only reapply at a node whose selector is a
head of one of the selectors in the corresponding indefinite skeleton
(again because the parse tree of the corresponding environment element
must have appeared in the parse tree matched by the SD). This slight
redundancy is tolerated to maintain the simplicity of the definition.
This completes the definition of the semantics of IGTs except
for the question of the uniqueness of environments, discussed in the

following section.
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2.3.3 Uniqueness of the Transformed Parse Tree

A natural question regarding definitions such as those of the
preceding section is whether the parse tree asserted to be the result
of applying a transformation (or aggregate of transformations) is
uniquely determined by the parse tree being transformed and the trans-
formation. This section presents a proof that, by placing an order
on the indefinite elements of environments (corresponding to top-down,
left-to-right matching of indefinites in the SD of a transformation),
the various predicates and consistency conditions act in concert to
guarantee an affirmative answer to this question, except for generated
symbols. (Indeed, the usefulness of generated symbols is precisely
that successive generations of the same symbol may produce different
results, as for the generated labels discussed in section 1.1.1.)

It should be clear that the definitions given so far do not
always uniquely determine the match of a Symbol in an indefinite list,
in case the subtree being transformed contains multiple instances of
a match for that symbol. That is, for Transformation 12 and example
(14) of section 1.1.4, the definitions so far given do not determine
that "§" will be the identifier first matched by <identifier>"1".

For this particular example the order in which the matches occur is
not significant, but it is possible to write transformations which
depend on the order of matching indefinites, hence that order should
be defined.

The first step is to define an order for two comparable indefinite
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environment elements. Two environment elements are comparable if the

predicate is-comparable(e,e') is satisfied:

is-comparable(e,e') = is-G-env-elet(e) A is-G-env-elet(e"')

Avar(e) = var(e') A s-parse(e) = s-parse(e')

Anis-Qos-indef-skel(e) A |s—indef-skel(e)| = |s-indef-skel(e') |
| s—indef-skel(e) |
A Et ( 301)( 30£)[Ui = elem(i) os-indef-skel(e)
i=1

Aoi = elem(i)os-indef-skel(e"')

As—symbolocios—parse(e) = s—symbolocios—parse(e')]

That is, two environment elements are comparable if their variables
and parse trees are equal, they both have indefinite skeletons, and
corresponding elements of those skeletons select subtrees of the
parse tree having the same head symbol.

AL e and e, are comparable environment elements, e, is less than

e, if they satisfy the predicate Zs-less-than (e,se,), where

is-comparable (e;,ej;):

is-less-than(ej,e;) = ( 3i)( 3j;)( Jjia)iC o) =Ean)i Joy)
i-1
( Et elem(k)es-indef-skel(e;) = elem(k)os—indef—skel(ez))
k=1

Aelem(i)°s-indef—skel(e1) = gycelem(j;) oo
Nelem(i)os-indef-skel(e;) = oj0elem(j,)e0
NGy < d2 v [31 =32 Aoy = TdAo, # 1Id])

That is, one of two comparable environment elements is less than the
other if corresponding elements of their indefinite skeletons are

equal up to some point, at which the selector of the first is either
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left of, or properly contained in, the selector of the second.

Lemma 2.3.3 (1)
Let e; and e; be comparable environment elements. Then either

e) = e; or one is less than the other.

Proof:

Suppose e} # ep. Then by the definition of is-comparable e; and
e, differ in their indefinite skeletons, i.e., ( 3i')[elem(i')e
s-indef-skel(el) # elem(i‘)°s—indef—skel(e2)]. Let i be the first
such i', and for j=1,2, let Tj = elem(i)os-indef-skel(ej). Now
T, # T, implies either one is a proper head of the other, or they
.branch at some point. Suppose is-head(t;,T;). Then ( 30)( Jo,)
( 33) [ty = elem(j)eoo A 15 = opcelem(j)ec A o, # Id] and hence
is-less-than(e;,e;). On the other hand, if T; and 1, branch,
(331)(332)(30)( 307)(3oy) [1; = 01°e1$m(j1)°c A 1, = opcelem(jy)eo
A1 < 32V 3 < 31)]. But then is-less-than(ej,ep)V

is—less-than(ez,el). Q.B.D’,

Now suppose E is an environment and let It(E) denote the subset
of E consisting of those environment elements which correspond to
indefinite patterns in the SD of a transformation t. The order for
environment elements can be extended to an order on the subsets
It(El) and It(Ez) of two environments E1 and EZ' both of which
suffice to match t to a parse tree p, by comparing the elements of

these subsets in an order defined by t. The computation of the
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relation between two environments is performed by the recursive
predicate is-not-greater-env(El,Ez,s-sd(t),P), where

is—match(p,s—sd(t),El,{}) A is-match(p,s-sd(t),Ep,{]):

is-not-greater-env(E;,E5,t,p)
(is-FREE(t) V is-final-pat(t) - T,

is-prod-pat(t) is—not—greater—env—list(El, Ez’ s-sub-list(t),
s-sub-1list(p)),

( 3ey)( 3ep) [is-indef-pat(t) A e, € EEARe R ERgA is-compat(e,,t)
Ais—instance(p,el,t) A is—comparable(el,ez) %
(is—less-than(el,ez) % is-less—than(ez,el) =

—1is—less—than(e2,e1),
T + is-not-greater-env-list(E ,E,,

|s-indef-1ist(t) |
s-indef-1list(t), LIST (elem(i)es-indef-skel(e;)) (p))
i=1

is-not-greater-env-list(E,,E,,t,p) =
(el =0~ T,
is—not—gteater—env(fl, E2, head(t), head(p))
A is-not-greater-env(E,, E;, head(t), head(p)) ~
is—not—greater—env—list(El, Ez, tail(E), ‘tail(p))5
A is—not—greater—env(fl, E_, head(t), head(p))

)

2’

(Note that appropriate e; and e, always exist in is-not-greater-env,
since both E; and £, match t and p; and that e; and e, are always
comparable, since recursion terminates as soon as a pair are not

equal.)
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In analogy with lemma 2.3.3 (1) there is:

Lemma 2.3.3 (2)
Let E;, £, t, and p be such that is-match(p, s-sd(t), E;, {})A

is-match(p, s-sd(t), E,p, {}). Then is-not-greater-env(E;, Ej,

s-sd(t), p) V is-not—greater-env(fz, El’ s-sd(t), p), and both are

true if and only if It(El) = It(Ez).

The lemma follows immediately from the observation that,

because s-sd(t) is finite, is-not-greater-env terminates. Also,

is-not-greater-env(E,,E;,s-sd(t),p) A is-not-greater-env(E,,E;,s-sd(t),

p) if and only if -is-less-than(e;,e;) A mis-less-than(e,,e;) for

each corresponding pair of elements e; and e, in It(El) and It(EZ)'
Since there are only a finite number of elements in It(E) for

any transformation t, and since there are only a finite number of

distinct comparable environment elements ﬂitﬁ the same variable and

parse tree, the following lemma holds:

Lemma 2.3.3 (3)
The collection {It(Ei)} of I subsets of the elements of a collec-
tion {Ei} of environments satisfying is-match(p,t,s-sd(t),Ei,{})is

well ordered by is-not-greater-env.

There is thus an environment having a unique minimum It subset
for each transformation-parse tree pair, as determined by the
predicate is-indef-min (cf. 2.3.2 (1) Trlist Result and 2.3.2 (6)

Subtrlist Result which use is-indef-min.)
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Definition 2.3.3 (1) Indefinite Minimum
An environment E is indefinite minimum with respect to a parse
: : Tk 5
tree p, transformation t, and global environment E' if the predicate
is-indef-min(E,p,t,E') is satisfied, where is-G-env(E U E')A
is-G-parse(p) A is-G-IGT(t):

is—indef-min(E,p,t,E') = is-match(p, s-sd(t), E' W12 {})

A(VE") [is-G-env(E' U E") A is-match(p, s-sd(t), E'U E", (b
> is-not-greater-env(E, E", s-sd(t), p)]

It is now possible to prove the uniqueness of the parse tree
which is the result of applying a single transformation not containing
subtransformations and applied in the context of an empty transforma-
tion set. For conciseness a transformation list of length one is

constructed from the transformation and passed to is-trlist-result.

Theorem 2.3.3 (1)

Suppose is-G-IGT(t) A (V1) [is-patet(t) D |s—subtrseq°T(t)] =0,
is-G-parse(p), is-G-parse(p;), and is-trlist-result(p;, p,
u0(<elem(1): [ > {}). Then p; is unique except possibly for subtrees

corresponding to generable symbols in s-sc(t).

Proof:

By the definitions of is-trset-result and is-subtrlist-result,
these predicates reduce to the equality predicate on their first two
arguments for S = {} and empty subtransformation sequences. Therefore,

they may be ignored in is-match in this proof.
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Suppose ( 3p2)[is—trlist—result(pz, Dis u0(<elem(1): t>); {})].
Then p; satisfies is-tr-result for some indefinite minimum environ-
ment E,, as does p; for E;. But by Lemma 2.3.3 (3), It(EI) is
uniquely determined by p and t, hence It(El) = It(EZ)-

Let Vt(E) = {e € E | ( 31)[is-indexedoTos-sd(t) A var(e) = vareto
s—sd(t)]} (This excludes the generable symbols, which are those
indexed symbols appearing in the SC of t but not in the SD.) Then
Vt(El) = Vt(E2)' For Vt(El) n It(El) = Vt(EZ) n It(Ez), and if
e; € Vt(Ei) - It(Ei)’ i=1,2 and var(e;) = var(e;), by the definition
of Vt ( 31)[var(e;) = varetes-sd(t)]. By definition of is-match,

( 301)[s-parse(ei) = oi(p)], i=1,2. Now 9y depends possibly on ele-
ments of It(Ei)’ but It(El) = It(Ez), hence 0, = 0,; therefore,
e) = ep. Thus Vt(E]) = Vt(EZ)-

Now it follows that p; = p, except for subtrees arising from
elements of El—Vt(El) and Ez—Vt(Ez) (the §enerab1e symbols). For
the tree structure of p; and p, is determined in three ways: from
final patterns, production patterns, and indefinite patterns of t.
Certainly the parts matching production patterns of t are identical,
as are those determined from indefinite patterns since It(El) =
It(EZ) and the definition of is-G-IGT guarantees a unique correspond-
ing symbol in s-sd(t) for each indefinite symbol in s-sc(t). As for
final patterns of t, either these are unindexed, in which case by
the definition of is-G-sc their symbol is a terminal symbol of G, as
is that of p; and p; (by is-match) and all are equal; or else the

final pattern is indexed, hence if the corresponding environment

g5
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element is in Vt(El) = Vt(E2)’ that subtree of P, and p, are equal.

Q.E.D.

A similar theorem and proof are possible for subtransformations,
where the scope rules of is-G-IGT guarantee that for all non-
generable symbols in the SC there exist corresponding elements in
the total environment E' U E. The theorem can then be extended to
the result of applying a transformation set sequence, under the hypo-
thesis that the sequence terminates. In view of the result of section

2.4, however, termination cannot always be guaranteed.

Corollary 2.3.2 (1)

Suppose is-G-IGT(t) A s-sd(t) = s-sc(t), and is-G-parse(p). Then

is-trlist-result(p, p, u0(<elem(l): ) {}).

Proof:
The proof follows immediately from the fact that the SD and SC
of t satisfy both is-G-sd and is-G-sc. Hence t contains no subtrans-—

formations and no generable symbols, and theorem 2.3.3 (1) applies.

Q.E.D.
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2.4 Generative Power of Intra-Grammatical Transformations

This section is devoted to a proof that IGTs have at least the
generative power of a simple Turing machine (in the sense of Davis
[13]). The theorem is proved by stating an algorithm which, given
the definition of a Turing machine, constructs an IGT system which
simulates the operation of the Turing machine, in the sense that
given the same initial instantaneous description they both give the
same resultant.

To facilitate the proof, some definitions for IGTs paralleling
those of [13] for Turing machines are introduced. Suppose that Z is
a simple Turing machine with an alphabet A = {SO’SI""’Sn}’ a set
of states I = {ql’qz""’qm} and a set of quadruples K. A transfor-
mational instantaneous description (TID) of Z is a G,-parse tree

whose head symbol is <inst descr>, where G, is the cfpsg:

Z

Gz = (is—GZ-nonterm, is—GZ-term, is-GZ—prod, <inst descr>)

and the relevant predicates are defined (in terms of the concrete

forms of the elements they characterize) by:

is—Gz-ﬂonterm = {<inst descr>, <left part>, <right part>,

<state>, <symbol>}

is-G,~term = AU £ U {#,, #}

and the elements of is—GZ:prod are:

9y
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<inst descr> ::= <left part> <state> <right part>

<left part> ::= # | <left part> <symbol>

L
<right part> ::= #; | <symbol> <right part>
<state> :i=q, | g, e B
<symbol> ::= SO | S1 (s Sh

Corresponding to the set of quadruples K of Z is constructed
the <inst descr>-transformation list LZ, according to the following
algorithm:

(a) Corresponding to a quadruple of the form:
g 9y %y

add to LZ the transformation:

VSDI

<left part> "1" CH Sj <right part> "1"
===

slleGtpart> il
lscl

q, Sk <right part> "1"

(b) Corresponding to a quadruple of the form:

Sk
q JRQQ

add to Lz the two transformations in order:
ISDI
<left part> '"1"
par it 9 Sj #R
==>
<left part> "1"
P > 1 Sj a, So #R
'SC'
'SD'
<1eft "nan . " n
part> "1 q Sj <right part> "1
==>
<left part> "1" Sj q, <right part> "1"
lscl
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(c) Corresponding to a quadruple of the form:
a4 Sj L q,
add to LZ the two transformations:
ISD'

m"myn
#L a9y Sj <right part> "1

==>

#L q, S, Sj <right part> "l

lsc'
'SD'

<left part> "1" <symbol> "1" Q Sj <cdght part>iil

==>
<lleft part> "1" a, <symbol> "1" Sj <right part> "1"
'sc!
(These are the only kinds of quadruples which occur in K.)

A TID of Z is a transformational terminal description (TTD) of Z
if it is the result of applying the transformation set sequence
consisting of LZ to a TID of Z.

IE"a TID e, is the result of applyigé a single transformation of
L (which does apply) to a TID py»> One writes T IE Pp is a
ZEp of Z and, for 'l <1 < p-1, Bpi such that p, is a TID of Z and
P Pyy,> ODE writes °p = TRz(pl), that is, Pp is the transforma-
tional resultant by Z of G

With these definitions, the theorem may be stated (cf. section

2.2.2 for the definition of R):

Theorem 2.4 (1)
Let Z be a simple Turing machine and al’ap be instantaneous des-

criptions of Z. Let GZ and LZ be a cfpsg and transformation list
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constructed from Z as described above, and pl,pp be: TIDst of e Z ;iiand

suppose R[pl] = #Lal#R and R[pp] = #LaP#R. Then ap = Resz(al) Hofs

and only if pp = TRZ(DI)'

Proof:

It suffices to prove that, for Z, o Ex an+1 if and only if

== where R[pn) = #Lan#R and R[pn+1] = #Lan+l#R' By defini-

tion a; > a implies one of five cases holds (cf. [13] p. 7);

T
similarly by the algorithm above, piies> o implies one of five
similar cases (corresponding to the five kinds of transformations

generated by the algorithm) holds.

Case (1). There exist expressions P and Q (possibly empty) such

that:
o= i q Sj Q
oy B e Sk Q
and 9 Sj Sk q, € K. Let o be a Gz—parse tree such that R[pn] =

#Lan#R' Then by the definition of tape expression (definition 1.5

o BRSBTSt s cllear that P corresponds to the tree:

<inst descr>

<left part> <state> <right part>

#L B CH <syTbol> <right part>

Sj Q #R

Hence a transformation created in step (a) of the algorithm will apply

to produce an object Doty corresponding to the tree:
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<inst descr>

<left part> <state> <right part>

: |

#L i) q, <symbol> <right part>

Sy Q #R

so that R[pn+1] = #L P q, Sk Q #R = i #R’ as required. Moreover,

L S+l

there is only one transformation in LZ which applies to P since by

the definition of Z there is only one quadruple in K beginning 9y Sj...
Thus if T TR and #Lan#R = R[on], then there is a quadruple:

93 54 S 9,

in K so that e where e e P q, Sk 03 or #La = R[p 1l

n+) el n+1#R ntl

(2) There exists an expression P (possibly empty) such that:

I B a Sj

U1 = B S5 9y So

and 9 Sj R q, ¢ K. Let o be a GZ—parse tree such that R[pn] =

#Lan#R' Then by definition, P corresponds to the tree:

<inst descr>

g
<left part> <state> <right part>
#L B CH <symbol> <right part>
Sj #R

Hence the first of a pair of transformations created in step (b) of
the algorithm applies (note the importance of the order of this pair

of transformations) to give an object Pat1 corresponding to the tree:
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<inst descr>

<left part> <state> <right part>
<left part> <symbol> a, <sy7bol> <right part>
: | ! |
#L P Sj 0 #R

so that R[pn+1] = #L P Sj q, So #R = #L LA #R’ as required. In
this case there are two transformations in LZ that apply to P but
the one ending in #R is first in the list. Thus if TN T and

#Lan#R = R[pn], it is this first transformation which will apply and

its corresponding quadruple in K 1is q; Sj R 9y, SO that ol s

where a = P Sj q Sy, or #L e #R = R[pn+l], as required.

(3) There exist expressions P and Q (possibly empty) such that:

o =P a; Sj Sk Q

o

and 9 Sj R q, € K. The argument is similar to case (2), but the

second transformation of the pair of step (b) applies, since the

symbol after Sj is not #R.
(4) There exists an expression Q (possibly empty) such that:

i = (3

n al Sj Q

[}

o 1 9, Sp Sj Q
and 9y Sj L q) € K. The argument is similar to case (1), and the

first transformation of step (c) applies.
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(5) There exist expressions P and Q (possibly empty) such that:

%n

PSkqiSjQ
“nt1 T Pa sk Sj Q
and qy Sj L q, € K. The argument is similar to case (4), but the
second transformation of the pair of step (c) applies.
hence by induction,

Thus a_ - if and only if p_==>p
n n n

“n+1 +1°

up = Resz(ul) if and only if pp = TRz(pl) where #Lal#R = R[01] and

#Lap#R = R[pp]. Q.E.D.

It is interesting to note that in this proof only the very
simplest transformations (those with no indefinites and no subtrans-
formations) are used. This is possible because the grammar GZ is
in some sense ''well matched" to the task it must perform. One can
gain some insight into the relationship between the form of the

grammar and the need to use indefinites by considering the transfor-

mation list necessary to prove this theorem if the productions:

<right part> ::= #R | <right part 1> #R

<right part 1> ::= <symbol> | <right part 1> <symbol>

are substituted for that of <right part> in the above grammar.

103
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2.5 A Computer Implementation of Intra-Grammatical Transformations

The computer implementation of IGTs was constructed both to study
the semantics of IGTs and to facilitate the design and verification
of transformation set sequences. Both transformation set sequences
and programs can be presented to the system in their concrete forms
(as defined in section 2.2.2), and the transformed program is printed
(or punched) by the system in its concrete form. This ability to
work with the concrete forms of IGTs and programs (which are much
simpler than their abstract forms) greatly facilitates use of the
system.

The IGT system consists of two programs: the compiler, TRCOM,
and the interpreter, XFORM. TRCOM is written in the Stanford compiler
writing language XPL [28]. It inverts the mapping R of section 2.2.2
to translate the concrete forms of IGTs and programs into a LISP
list representation of their abstract forms. The compiler is complete
in the sense that it translates all of the features of transformations
and subtransformations (imposing only the restriction that indices
be integers in the range 0-999 and that mentioned at the end of section
2.5.2); however, it does not check all of the consistency conditions
of section 2.2.1. (Thus certain syntactic errors, which are not
detected in TRCOM, may be detected in XFORM as the transformations
are interpreted.) TRCOM is parameterized in terms of the grammar
used, hence a compiler for a different grammar may be obtained simply

by replacing the grammar tables (produced by the XPL Analyzer program)
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and the lexical analyzer, which processes input characters to convert
them to terminal symbols of the grammar. TRCOM is not otherwise
particularly innovative and will not be discussed further here.

XFORM is the transformation interpreter and is written in LISP
[27]. It accepts a list representation of the pattern and parse
trees which are the abstract forms of IGTs and programs and applies
the former to the latter to produce the transformed program. In
the following discussion the functions implementing XFORM are stated
as LISP M-expressions employing the selectors and predicates introduced
in sections 2.1, 2.2, 2.3, and the remainder of this section. (The
actual LISP program used is written in terms of the explicit data
representation chosen and includes checks for certain syntactic
errors; it will not be discussed further here.)

The functions constituting XFORM may be divided into three
categories: matching, changing, and sequ?ncing. The matching func-
tions determine if the SD of a given transformation matches a
particular parse tree, and if it does, they produce the (indefinite
minimum) environment defining the match. The changing functions
then use this environment and the SC of the transformation to construct
the transformed parse tree. Both matching and changing are performed
under control of the sequencing functions.

Before the functions for matching, changing, and sequencing
can be discussed, the representation for environments and certain
synthesis functions for trees must be defined. Environments are,

of course, represented by lists of environment elements. (Note that
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a "dummy" NIL is added to the end of every environment to distinguish

the empty environment from NIL, which indicates a transformation

fails to match.) To look up entries in the environment, the following

function is useful:

lookup [variable; env] =
A[[env elet];
[null[env elet] - NIL;
var[env elet] = variable — env elet;

T -+ lookup[variable; cdr[env]]

]

] [car[env]]

Environment elements are list representations of the objects

synthesized by the following function:

env-elet(v,p,s) =
u0(<s—symbol: s-symbol(v)>, <s-index: s-index(v)>,

<s-parse: p>, <s-indef-skel: s>)

Here v is the result of the function var (cf. definition 2.2.1 (2)), p
is a parse tree, and s is an indefinite skeleton represented by
"'severely pruning' a copy of the parse tree of the element so that

it extends only to the substitutable nodes, i.e., the nodes selected

by the selectors in the indefinite skeleton. This representation

of an indefinite skeleton, which for the remainder of this section

is considered to be selected by s-indef-skel, may be taken to be

the list representation of the abstract object defined by the predicate

1s-G-skel:
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is-skel = is-final-skel V is-prod-skel
is-final-skel = (<s-symbol: is-symbol>, <s-subst: T V F>)
is-prod-skel = (<s-symbol: is-symbol>, <s-sub-list: is-skel-list>)
is-G-skel(s) = is-skel(s)
A(Vt) [is-final-skelet(s) D is-G-symboles-symbolet(s)
Ais-prod-skelet(s) @ is-G-prodeimmed-prodet(s)
A(C 3t'")[s—substet'ot(s)]]

(Note that the last conjunct defines the condition terminating
"pruning".)
Finally, the group of functions which synthesize parse trees

and skeleton trees are introduced. These are:
tree(s,l) = u0(<s-symbol: s>, <s-sub-list: 2>)
where is-G-symbol(s) A (is-parse-list(2) V is-skel-list(%));
final-skel(s,f) = u0(<s—symbol: s>, <s-subst: f>)
>
where is-G-symbol(s) A (f V—f);

final-parse(s) = u0(<s—symbol: s>)

where is-G-term(s). The LISP functions cons, car, and cdr are used

for operations on lists.
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2w Functions for Matching

The functions which perform the matching operation are match,
matchlist, matchindefinite, matchindefinitelist, finish, and checkmatch,
assisted by join, treel, and Lookup.

The key to understanding the matching operation is the concept of
failure of a pattern tree to match a parse tree. Failure for final
and production patterns is quite simple: the former fails if its symbol
and that of the parse tree are not equal; the latter fails for the same
reason, or if its sublist and that of the parse tree are not the same
length, or if some pattern tree in the sublist fails. They also fail
if they are indexed, a match of their variable has previously occurred,
and the parse tree is not equal to that previously matched.

Failure for indefinites is more complex, since the pattern trees in
an indefinite list undergo conditional matching. Thus a pattern tree
in an indefinite list may fail for the reasons given above or because
an adjacency relation (cf. section 2.3.1) is violated; if not, it con-
ditionally matches. This conditional match, however, may ultimately
fail because a pattern tree later in the indefinite list fails, or
because some pattern tree later in the SD fails. If a conditional
match fails, the match is reattempted later in the parse tree, subject
to the satisfaction of the adjacency relations for indefinites. (Here
"later" is to be understood as "further down, or further to the right'".)

The matching functions are defined below. The identifiers used
are largely self-explanatory, except for rest of sd, rest of parse, and

wwmatched. The concept of failure outlined above necessitates main-
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taining the matches of all pattern trees in indefinite lists as an
unbroken sequence of recursive function calls until the entire SD has
been matched. Therefore, auxiliary stacks are needed to pass down
unexamined parts of the SD and parse tree; these are rest of sd and
rest of parse. Unmatched implements the consistency condition for
indefinite trees by indicating when no substitutable skeleton has yet
been added to a skeleton list. All of the functions return a list of
the form cons[X,env], where X is the atom T if no indefinite pattern
has been matched lower in the pattern tree. If such an indefinite
pattern has been matched, X is a list of one or more partially con-

structed skeleton trees.
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match[sd; parse; env; rest of sd; rest of parse]
[s-symbol [parse] = s-symbol[sd] >
checkmatch[var[sd]; 7is-indef-pat[sd], parse;

[is-final-pat[sd] - env;

is-indef4pat[sd] - matchindefinitelist[s-indef-1list[sd];
list[parsel; env; F; rest of sd; cons[DNI;
rest of parsel];

T - matchlist[s-sub-list[sd]; s-sub-list[parse]; env;
rest of sd; rest of parse]

115
T + NIL

matchlist[sd list; parse list; env; rest of sd; rest of parse] =
[null[sd 1list] -+ [null[parse] » env; T - NIL];
null[parse] -+ NIL;
T > A[[envl];
[null[envl] - NIL;
car[envl] - matchlist[cdr[sd list]; cdr[parse list];
envl; rest of sd; rest of parsel;
T > envl
]
] [match[car[sd 1list]; car[parse list]; env;
cons[cdr[sd list]; rest of sd]; cons[cdr[parse list];

rest of parse]]]
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matchindefinite[indef list; parse; env; rest of sd; rest of parse] =
A[[indef listl];
[null [indef 1listl] - NIL;
T > A[[envl];

[null[envl] - treel[s-symbol[parse];
matchindefinitelist[indef list;
s-sub-list[parse]; env; T; rest of sd;
rest of parse]];

car[envl] ~

A [env2];

[null[env2] -+ treel[s-symbol[parse];
matchindefinitelist[indef list;
s-sub-list[parse]; env; T;
rest of sd; rest of parse]];

T + join[final-skel[s-symbol[parse];
T]; env2]

]

] [matchindefinitelist[cdr[indef listl];

car[rest of parse]; envl; F;

rest of sd; cdr[rest of parse]]];

T - join[final-skel[s-symbol[parse]; T]; envl]

]

] [match[car[indef 1listl]; parse; env,
cons[cons[IND; cdr[indef listl]]; rest of sd];
rest of parse]]

]
] [ [is-FREE[car[indef 1list]] + cdr[indef list];
T + indef 1ist

1]

L
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matchindefinitelist[indef 1list; parse list; env; unmatched;
rest of sd; rest of tree] =
[null[parse list] ~
[unmatched - NIL;
T + join[NIL; matchindefinitelist[indef list;
car[rest of parse]; env; F; rest of sd;
cdr[rest of parse]]];
15
is-DNI[parse list] -
[null[indef list] V is-FREE[car[indef list]]
Anull[cdr[indef 1list]] -
finish[car[rest of sd]; car[rest of parse]; env;
cdr[rest of sd]; cdr[rest of parse]];
= SN
1
T > A[[envl];
[is-FREE[car [indef 1list]] A null[envl] -
join[final—skel[s—symbol[car[parse Tist Bl
matchindefinitelist[indef list; cdr[parse list];

env; unmatched; rest of sd; rest of parse]];
T » envl

]
] [matchindefinite[indef list; car[parse list]; env;

rest of sd; cons[cdr[parse 1list]; rest of parse]]]
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finish[sd list; parse list; env; rest of sd; rest of parse] =
[null[rest of sd] -
[null[rest of parse] - cons[NIL; cdr[env]];
T - NIL
15
null[rest of parse] - NIL;
null[sd list] -
[null[parse list] -+ finish[car[rest of sd];
car[rest of parse]; env; cdr[rest of sd];
cdr[rest of parsel];
L. NIL
IH
T > A[[envl];

[null[envl] - NIL;

car[envl] -+ finish[car[rest of sd];
car[rest of parse]; envl; cdr[rest of sd];
cdr[rest of parse]];

T »> envl

]

] [ [is-IND[car[sd 1list]] - .
matchindefinitelist[cdr([sd list]; parse list:
env; F; rest of sd; rest of parse];

T -+ matchlist[sd list; parse list; env; rest of sd;
rest of parse]

1]

113
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checkmatch[variable; monindef; parse; env] =
[null[env] -+ NIL;
is-Q[s-index[variable]] -
[nonindef - env;
T - cons[cdr[car[env]]; cdr[env]]
|H
T > A[[env elet];
fnull[env elet] - cons|
[nonindef - car[env]; T + cdr[car[env]]];
cons[env-elet [variable; parse;
[nonindef + NIL; T -+ car[car[car[env]]]]];
cdr[env]]];
parse = s-parse[env elet] - env;
T -+ NIL
]
] [lookup[variable; cdr[env]]]

join[skel; env] =
[null[env] -+ NIL;
null[skel] + cons[cons[skel; car[env]]; cdr[env]];
T -+ cons[cons[cons[skel; car[car[env]]]; cdr[car[env]]];

cdr[env]]

treel[symbol; env] =
[null[env] - NIL;
T > cons[cons[cons[tree[symbol; car[car[env]]];

car[cdr[car[env]]]]; cdr[cdr[car[env]]]]; cdr[env]]
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2.5.2 Functions for Changing

The functions which perform the changing operation are change,
changelist, changeindefinite, and changeindefinitelist, assisted by
lookup, applytrset, and applysubtrseq. These latter two functions are
sequencing functions and are described in section 2.5.3. For the
purpose of understanding the changing functions, they may be considered
to be the identity function on their first argument.

The operation of the changing functions is straightforward. Note
that the functions for indefinites employ the indefinite skeleton of an
environment element as a kind of '"template' to locate the nodes in the
parse tree of that element where the parse trees corresponding to non-
free symbols in the indefinite list must be substituted.

The changing functions are defined below; again the identifiers
used are self-explanatory. The functions in all cases return the
partially constructed parse tree, which in the case of the indefinite
functions is prefixed by the unused remainder of the indefinite list of

the indefinite pattern guiding construction.
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change[sc; env; tr set] =
[is-indexed[sc] -
A[[env elet];
[null[env elet] + s—parse[car[cdr[rplacd[env; cons
[env-elet[var[sc]; generate[s-symbol[sc]];
NIL]; cdr[env]]]1]1]];
is-indef-pat[sc] -+
cdr[changeindefinite[s-indef-list[sc];
s-indef-skel[env elet]; s-parse[env elet];
env; tr set]];
T + s-parse[env elet]
]
] [lookup[var[sc]; env]];
is-final-pat[sc] + sc;
T > tree[s-symbol[sc]; changelist[s-sub-list[sc]; env; tr set]]

]

changelist[sc list; env; tr set] =
[null[sc list] - NIL;
T > cons[applytrset[applysubtrseq[change[car[sc list]; env;
tr set]; s-subtrseq[car[sc list]]; env; tr set];

tr set]; changelist[cdr[sc list]; env; tr set]]
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changeindefinite[indef list; skel; parse; env; tr set] =
A [indef 1listl];
[is-final-skel[skel] -

[s-subst[skel] -+ cons[cdr[indef 1listl];
applysubtrseq[change[car[indef 1listl]; env;
tr set]; s-subtrseq[car[indef listl]]; env;
trieet]]:

T » cons[indef listl; parse]

]

T + A[[indef cum parse list];
cons[car[indef cum parse list];
tree[s-symbol[skel]; cdr[indef cum parse list]]]
] [changeindefinitelist[indef listl;
s-sub-list[skel]; s-sub-list[parse]; env;
tr set]]
]
] [ [null[indef 1list] V —1is-FREE[car[indef 1list]] > indef list;
T + cdr[indef list]
1]

changeindefinitelist[indef list; skel list; parse list; env; tr set] =
[null[skel list] + cons[indef list; NIL];
T > A[[indef cum parse];
A[[indef cum parse list];
cons[car[indef cum parse list];
cons [applytrset[cdr[indef cum parse]; tr set];
cdr[indef cum parse list]]]
] [changeindefinitelist[car[indef cum parse];
cdr[skel list]; cdr[parse list]; env; tr set]]
] [changeindefinite[indef 1ist; car[skel list];

car[parse list]; env; tr set]]
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One should note that the manner in which generated symbols

are implemented in change is not quite faithful to the semantics

of generable symbols as given by the definitions of sectionms 2.2

and 2.3.

occurs in
formation
represent
the above
SC of the

it. This

This may be seen by considering a generable symbol which

the SC of a transformation, and also in the SC of a subtrans-
in it. If these symbols have the same index, they should

the same parse tree, but this will not be the case for
definition of change if the symbol occurs later in the
transformation than does the subtransformation which uses

discrepancy could easily be corrected by prefacing the

sc-tree of each transformation (and subtransformation) by a list

of the generable symbols appearing in it, and generating the corres-

ponding parse trees for these symbols and adding them to the environ-

ment before starting the changing operation. For the examples of

section 3

this discrepancy has no effect, since in no case does the

above condition hold.
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2.5.3 Functions for Sequencing

The functions which perform the sequencing operation are: applysub-
trlist, searchlist, applytrset, searchset, applytrsetrec, applytrset-
reclist, applytrsetseq, and applysubtrseq.

Those functions whose names begin with 'apply" correspond roughly
to the predicates of section 2.3.2 whose names end in '-result". How-
ever, the function applysubtrlist corresponds to both of the predicates
is-subtrlist-result and is-trlist-result. It has the basic form of
is-subtrlist-result (with global environment and Markov sequencing).
When it is employed for is-trlist-result, it is supplied the null
environment, and advantage is taken of the equivalence of Markov sequenc-
ing and recursive reapplication of the transformation set for the top
node of the parse tree (cf. the discussion in section 1.1.2). The
functions searchlist and searchset locate the appropriate element of a
transformation (or subtransformation) list and transformation set,
respectively. (Transformation sets, of course, are represented by a
list of transformation lists.)

The application of a transformation set sequence to a parse tree

is initiated by calling applytrsetseq.

applysubtrlist[parse; tr subtr list; global env; tr set] =
A[[changed parse];
[null[changed parse] + parse;
T - applysubtrlist[changed parse; tr subtr list;
global env; tr set]

]
] [searchlist[parse; tr subtr list; global env; tr set]]

119
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searchlist[parse; tr subtr list; global env; tr set] 8=
[null[tr subtr list] - NIL;
T > A[[env];
[null[env] -+ searchlist[parse; cdr[tr subtr list];
global env; tr set];
T -+ applysubtrseq[change[s-sc[car[tr subtr list]];
env; tr set]; s-subtrseq[s-sc[car|[
tr subtr list]]l]: enwv: tr set]
]
] [match[s-sd[car[tr subtr list]]; parse; global env;
(NIL); (NIL)]]

applytrset[parse; tr set] =
Alltr 1ist);
[null[tr 1list] - parse;
T > applysubtrlist[parse; tr list; (NIL); tr set]
]

] [searchset[s-symbol[parse]; tr set]]

searchset[symbol; tr set] =
[null[tr set] - NIL;
s-symbol[s-sd[car[car[tr set]]]] = symbol - car[tr set];
T > searchset[symbol; cdr[tr set]]
]
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applytrsetrec[parse; tr set] =
AlfEr Tist]

[null[tr list] > tree[s-symbol[parse];
applytrsetreclist[s-sub-list[parse]; tr set]];

T > applysubtrlist[tree[s-symbol[parse];
applytrsetreclist[s-sub-list[parse]; tr set]];
Erplists (NIL)Y tr set]

]

] [searchset[s-symbol[parse]; tr set]]

applytrsetreclist[parse list; tr set] =
[null[parse list] - NIL;
T + cons[applytrsetrec[car[parse list]; tr set];

applytrsetreclist[cdr[parse list]; tr set]]

applytrsetseq[parse; tr set seq] =
[null[tr set seq] —+ parse;
T -+ applytrsetseq[applytrsetrec[parse; car[tr set seq]];

»
cdr[tr set seq]]

applysubtrseq[parse; subtr seq; global env; tr set] =
[null[subtr seq] -+ parse;
T + applysubtrseq[applysubtrlist[parse; car[subtr seq];

global env; tr set]; cdr[subtr seq]; global env; tr

set]
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3 Applications of Intra-Grammatical Transformations

In this section I discuss the application of intra-grammatical
transformations to the solution of two programming language defini-
tional problems: the problem of (static) identifier denotation,
which is the problem of associating an appearance of a variable in
a program with the applicable declaration of that variable: and the
problem of for statement optimization, which is the problem of deter-
mining when certain computations can be moved from a point within
the controlled statement of a for statement to a point outside it,
and so moving them.

In both cases the solutions are given for a slightly modified
version of the language Algol 60, appropriately extended to cover
new constructions introduced in the solution of these problems. The
grammar for this language is listed in section 6.1. In addition
to the extensions necessary for these exahmples (discussed in sections
3.1 and 3.2), modifications were made to the Algol 60 grammar as
given in the Revised Report [30] to make it compatible with the
Stanford XPL compiler generator system [28] used to construct a
parser for programs and transformations. These modifications are
summarized at the beginning of section 6.1. Throughout the remainder
of this section the use of the grammar of section 6.1 is to be under-
stood. (However, symbols such as 'BEGIN', enclosed in escape symbols
in section 6.1, will continue to be written with underlining (begin),

following the usual Algol 60 convention.)
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3.1 Transformations for Identifier Denotation

The problem of identifier denotation in Algol 60 is the problem
of associating each occurrence of an identifier in a program with
the appropriate declaration of that identifier, taking into account
the scope rules of declarations. This problem may be divided into
static and dynamic identifier denmotation, the former depending on
the lexicographic order of occurrence of blocks in the program,
and the latter depending on the order of execution of the blocks.

It is the static identifier denotation problem which is treated

here. (In view of the theorem of section 2.4, a transformational
specification of dynamic identifier denotation is also possible,

but it is likely to be considerably less elegant than that of static
denotation since the denotation of recursive procedure calls requires
that it either interact with the specification of program semantics
or specify them itself. For an idea of the complication involved,
see de Bakker [4].) The following subsection describes the theory
underlying the identifier denotation transformations, and section

3.1.2 describes the transformations themselves.



(Sadial) 125

3.1.1 Theory of Identifier Denotation

The solution for the static identifier denotation problem
developed here is essentially a transformational formulation of
the algorithms for static identifier denotation described by Boyle
and Grau [6] (except that no attempt is made to maintain the ordering
of serial numbers as is done in those algorithms). Since reference
[6] contains an extensive discussion of the identifier denotation
problem and a review of the pertinent literature, these will not
be repeated here.

Identifier denotation is carried out by substituting for each
<identifier token> in a block a <denotation> (cf. section 6.1)
consisting of a <serial number> (as always, distinct from all pre-
viously used serial numbers) and a <type indicator> which is derived
from the declaration of the identifier. The declaration itself
is replaced by dec followed by the appropmiate <denotation>. In
the case of array, switch, and procedure declarations, the information
which they contain in addition to type is moved to the <compound tail>
of the block. Thus after application of the identifier denotation
transformations to a program, each <block head> in the program
consists simply of begin followed by a list of declarations (separated
by semicolons) of the form dec <denotation>.

For the denotation of a <simple variable> an appropriately simple
transformation suffices, assuming that all <type declarations>s have

been transformed so that their <type list>s contain only one element:
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<block>{
Uik
<block head> "1"

{ ? <declaration> { <type> "1" <identifier> gl
<compound tail> "1"
==>
<block>
{ <block head> "1"

{ 7 <declaration> { dec <serial number> "1"
<type> "1" |} ? i
<compound tail> "1"

ISDl

<block> "11" { ? <identifier> "1" ? }
==>

<block>: 11

[ 2 <identifier> { <serial number> "1" <type> "1" } ? }
Vsl

lscl}

The denotation of arrays is somewhat more complicated than that
of simple variables, since the information in the <bound pair list>
of the array declaration must be removed from the declaration. This
information is placed in the <actual parameter list> of an explicit
call to the (new) standard function allocate, executed for its side
effect, which is to allocate the required amount of storage indicated
by its parameters. (It is assumed that allocate is capable of
accepting a variable number of parameters.) Thus the following block

containing an array declaration:
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begin array A[l:n, 1l:m, -2xk:2xk];
A1 1301 2= 1 (1

end

is replaced by:

begin dec #1 real array;
allocate (#1 real array, 1, n, 1, m, -2xk, 2xk);
1

#1 real array [1, 1, 0]

end

(The transformation lists involved in this conversion are the
<array segment>-, <array list>-, <block head>-, and <block>-
transformation lists.)

The denotation of labels is quite similar to that of simple
variables, but requires the creation of a declaration for the serial
number denoting the label, since, of course, there are no label declar-
ations in Algol 60. Another aspect of lakel denotation is concerned
with implementing the restriction of section 4.6.6 of the Revised
Report, which requires that labels labeling statements within the
controlled statement of a for statement be local to the controlled
statement. This restriction is implemented by searching the con-
trolled statement for a (undenoted) label definition, and if one is
found, converting the controlled statement into a block.

Switches are denoted in a manner similar to that of arrays,
with the expressions constituting the <switch list> being moved into
the <actual parameter list> of allocate. (Here allocate is assumed

to reserve the necessary storage locations and initialize them to
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the corresponding expressions.)

The denotation of procedure declarations is the most complicated
aspect of identifier denotation. As discussed in [6], it begins
by imbedding the <procedure body> in a block containing a result
declaration for the procedure identifier; this insures that the
<procedure body> behaves as if it were a block, as required by section
5.4.3 of the Revised Report, and also provides an identifier to receive
the result of a function procedure.

For a formal parameter called by value, a corresponding local
variable is declared with a <denotation> whose <type indicator>
is derived from the <specification part> of the procedure, and this
<denotation> is substituted for the identifier of the formal parameter
throughout the <procedure body>. If the formal parameter is an array
called by value, this <denotation>, followed by the formal parameter
itself, is placed in the <actual parameter list> of a call to allocate.
(Here allocate is assumed to reserve an amount of storage corres-—
ponding to that of the formal parameter and to initialize the elements
of it to the values of the corresponding elements of the formal
parameter.) If the formal parameter called by value is not an array,
the <denotation> is placed in the <left part> of an assignment state-
ment whose <expression> is the formal parameter itself.

Finally, each formal parameter (whether called by name or by

value) is declared with a <denotation> of the form <serial number>

formal, and is so denoted throughout the <procedure body>. (Of

course, for parameters called by value this <denotation> only appears
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in the declaration and the statement assigning the value to the local

identifier described above.)

Thus the following procedure:

integer procedure p(a,b,c);

value a,b; real a; array b; (2)

P

if ¢ < 0 then 1 else entier (a+b[l]xe) + p(a,b,c-1);

is transformed into:

integer proc p;
begin dec #1 integer result;

end

dec #2 real array;
dec #3 real;

dec #4 formal;

dec #5 formal;

dec #6 formal;

#3 real := #4 formal;

allocate (#2 real array, #5 formal);

#1 integer result := if #6 formal < O then 1 else

entier (#3 real + #2 real array [1] x #6 formal)
+ p (#3 real, #2 real array, #6 formal -1);

return #1 integer result

(The above changes are accomplished by the <procedure declaration>-

transformation list.) The final step in denotation of a procedure

declaration (performed by a member of the <block>-transformation

list) is to denote the procedure identifier throughout the block,

and move the procedure body to a skip statement at the beginning

of the <compound tail> of the block. (The skip statement is assumed
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to cause skipping of the execution of the <procedure body> upon entry
to the block.)

The discussion of the theory of identifier denotation is thus
complete, except to note that the bottom-up sequencing rule for
transformation sets guarantees that the identifiers in nested blocks
will be denoted in the proper order, thus automatically implementing

the identifier scope rules of Algol 60 (cf. Section 6.2).



(8:0.2) 131

3:1.2 The Identifier Denotation Transformation Set

At the end of this section is listed the identifier denotation
transformation set used with the computer implementation of IGTs
to perform identifier denotation. The transformation lists comprising
this transformation set and their contribution to identifier denotation
will be discussed briefly.

The <block head>-transformation list converts type and array
declarations to "single form', in which each contains the declaration
of only one identifier. Also, it replaces all occurrences of the
abbreviation array in declarations by its full form real array.

The <array segment>-transformation list converts the <bound
pair list> of an array declaration into a call on the allocate standard
function. This is done "in place" by placing the call to allocate
in a dummy <bound pair>.

The <array list>-transformation list*helps the conversion of
array declarations to single form by replicating the bounds informa-
tion among all identifiers in an <array segment>. Note that the
syntax insures that the <array segment>-transformation list applies
before the replication of the bounds information takes place, thus
minimizing the amount of transformation performed.

The operation of the <procedure declaration>-transformation
list is discussed in section 3.1.1. Note that it contains separate

transformations for functions and "proper' procedures; this minimizes
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the use of indefinites.® The subtransformations:

<specifier>{'SD' array ==> real array tsel]

in subtransformations 1.B.1 and 2.A.l are an alternative to creating
a <specifier>-transformation list to make this change. (The latter
would be highly inefficient because of the number of <specifier>s
created as <type indicator>s during identifier denotation.)

The <block>-transformation list performs the actual denotation of
the various kinds of identifiers (cf. section 3.1.1).

The <for statement>-transformation list insures that labels
defined in the controlled statement of a for statement are local
to it (cf. section 3.1.1). After the block is created and the first
such label is denoted, the remainder are denoted by the <block>-
transformation list.

The following points should be noted about this transformation
set: First, it does not attempt to 'diagnose" violations of the
Algol 60 scope rules. This lack is not serious except for local
identifiers occurring in the <bound pair list> of an array declaration,
which will be denoted in the same manner as if they had occurred
in a procedure or switch declaration. This scope violation could
be trapped by adding at the end of the <block>-transformation list
a transformation which converts any <denotation>s in the second or
following parameters of allocate to a standard identifier indicating

this error had occurred (taking care‘not to destroy switch and value

*
Subtraysformations 1.B.1 and 2.A.lare already the most complex trans—
formations (in terms of indefinites) ip the examples of section 3.
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array calls to allocate, however). The <identifier token>s of
undeclared identifiers, including those of identifiers used outside
the scope of their declarations, of course remain in the program
after all properly declared <identifier token>s have been replaced
by <denotation>s; they are thus self diagnosing (cf. section 6.2).
Second, this transformation set does not denote own variables.
This is a consequence of a ''glitch" in the grammar of section 6.1

and could be corrected by adding a production:
<type indicator> ::= own <type> | own <type> array

and making appropriate modifications to the various transformation
lists. As the static denotation of own variables need not differ
from that of non-own variables, this change was not deemed worthwhile.
The transformation lists comprising the identifier denotation
transformation set follow below; examples ?f its application to pro-

grams are given in section 6.2.
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YCOMMENT®' BLKHDTRS VERSIONIl.
TO SINGLE FORM;

<BLOCK HEAD>
?

YCOMMENT® 1. CONVERT TYPE DECLARATIONS TO SINGLE FORM;

lSDl
<BLOCK HEAD> "1™ ; <LOCAL OR OWN TYPF> "1" <SIMPLE VARIABLE>
STRYPELTST> "1

==
<BLOCK HEAD> ™1% ; <LOCAL OR OWN TYPE> "1" <SIMPLE VARIABLE>

<LOCAL: OR OWN TYPED> “]1%® <TYPE LIST> %1%
lSCl

YCOMMENT® 2, CONVERT ALL ARRAY DECLARATIONS TO SINGLE FORM;
'Snl

CELOGK HEAD> "1™ 3
<LOCAL OR OWN TYPE> "1™ *ARRAY' <ARRAY LIST> nm]w ,

<ARRAY SEGMENT> w]1n

==>
<BLOCK HEAD> "1% ;
<LOCAL OR OWN TYPE> "1™ tARRAY' <ARRAY LIST> t1n»
<LOCAL OR OWN TYPE> ™1" ®ARRAY' <ARRAY SEGMENT> w]w
lscl

'COMMENT®* 3. CONVERT TYPE DECLARATIONS TO SINGLE FORM;

'SP
'BEGIN® <LOCAL OR OWN TYPE> ®1" <SIMPLE VARIABLE> "1» ,
STPENETST3aw] N

==>
'BEGIN' <LOCAL OR OWN TYPE> "1m <SIMPLE VARIABLE> "1m
<LOCAL OR OWN TYPE> ®]w KTYPE LIST> "l»

15C

-

'COMMENT' 4. CONVERT ALL ARRAY DECLARATIONS TO SINGLE FORM;

'SDI
"BEGIN'
<LOCAL OR OWN TYPE> "]1" sARRAY' <ARRAY L ISTOMM NS
<ARRAY SEGMENT> w]n
==
'"BEGIN'
<LOCAL OR OWN TYPE> "]m sARRAY® <ARRAY LIST> mnw

e <LOCAL OR OWN TYPE> "1™ sARRAY® CARRAY SEGMENT> m)»
L}

TRANSFORMATIONS TO CONVERT DECLARATIONS

”lﬂ

"lll

.
v



*COMMENT* 5,

ISDI

(Bedie2)

CONVERY ARRAY TO RECAL ARRAY;

<BLOCK HEAD> "1" ; 'ARRAY' <ARRAY

— %

KRIOCK HEAD> ™1% 5 *REAL' *ARRAY?

1SC

*COMMENT!' 6.

'SDI
'BEGIN'
==
TREGINT
CSCI
%

3 oo o St 1n )

<ARRAY LIST>

CONVERT ARRAY TO REAL ARRAY;

*ARRAY?

AREAL®

CARRAY ' LIST> "w»

SARRAYELQARRAY" L ISTD. nyn

"1"

135
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TCOMMENT' ARSEGTRS VFRSION3. TRANSFORMATIONS TO CRFATE ALLOCATE CALLS
FROM THE BOUND PATIRS IN AN ARRAY SEGMENT;

<ARRAY SEGMENT>
a

*COMMENT' 1, PLACE MARKER TO TERMINATE APPLICATION OF <ARRAY SEGMENT>
TRANSFORMAT [ ONS 3§

'SU'

CIDENTIFIER> "1™ (/ <BOUND PAIR LIST> "1*

@ 1 : ALLOCATE ( <ACTUAL PARAMETER LIST> ) % /)
==>

STDENTIEIER> “ml®: & /] 'S <BOUND P ATRNCTIS Ti> e/ )

ISC'

*COMMENT* 2, MOVE UPPER AND LOWER BOUNDS TN THE FORMAL PARAMETER
LIST OF THE ALLOCATE PROCEDURE;

lsnl
SIDENTIETER> N1 ® (/ <BOUND. PAIR LIST> "1®
@ <BOUND PAIR LIST>
a 1 : ALLOCATE ( <ACTUAL PARAMETER LIST> "1 ) ,
<EXPRESSION> "1" : <EXPRESSICN> w2m

"
[}
v

<IDENTIFIER> "1" (/ <BOUND PAIR LIST> w]wm
@ <BOUND PAIR LIST>
@ 1 : ALLOCATE ( <ACTUAL PARAMETER LIST> "1w ,
CEXPRESSION> "1" , <EXPRESSION> m2w )
z?
2 /)
150

'COMMENT' 3, CREATE AN ALLOCATE CALL IN A BOUND PAIR LIST;

ISDI
CIDENTIFIFR> "1" (/ <BOUND PAIR LIST> "1®
A @ <BOUND PAIR HEAD> @ <KEXPRESSIOND> "Im : % <EXPRESSION> "2w 2 7 /)
<IDENTIFIER> "1™ (/ <ROUND PAIR LIST> o 5
@ <BOUND PATR HEAD> @ <EXPRESSION> a 1 2: %
H <EXPRESSION>
@ ALLOCATE ( CIDENTIFIER> mynm <EXPRESSIDN> w)w»
<EXPRESSION> w2n ) '
%2
z /)
ISC'
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*COMMENT' ARLSTTRS VERSIONl. TRANSFORMATIONS TO ASSOCIATE A BOUND PAIR
LIST WITH EACH IDENTIFIER IN AN ARRAY SEGMENT;

<ARRAY LIST>
a

*COMMENT' 1. CONVERT THE ARRAY SEGMENT TO SINGLE FORM;

lSDl
<ARRAY LIST> "1" , <IDENTIFIER> "1®" , <ARRAY SEGMENT> "1"
BERaR(E LY CBOUND: PATR SLTST> 1% /) -2
—
<ARRAY LIST> "1%" , <IDENTIFIER> "1" *(/1* <BOUND PAIR LIST> "1" /)
<ARRAY SEGMENT> "1™
ISC'

'COMMENT®* 2. CONVERT THE ARRAY SEGMENT TO SINGLE FORM;

'SDY
<IDENTIFIER> "1™ , <ARRAY SEGMENT> "1
SRS <BDUND: PAIR LIST> "1" /) %
==
<IDENTIFIER> "1™ *(/1* <BOUND PAIR LIST> "1" /) ,
<ARRAY SEGMENT> ®1w
o
z
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1COMMENT' PRDECTRS VERSION6. DENOTATION OF FORMAL AND VeLUE PARAMETERS
IN PROCEDURES, WITH INSERTION OF RESULT DECLARATIONSS

<PROCEDURE DECLARATION>
@

TURN STATEMENT>,
YCOMMENT' 1, INSERTION OF RESULT DECLARATION, <RE A
AND DENéTATlON OF RESULT IDENTIFIERS IN <TYPE> PROCEDURES

ISDI
<TYPE> ™1" 'PROCEDURE' <PROCEDURE HEADING> "1"
2 <IDENTIFIER> "1" ? % <STATEMENT> "1"

([}
"
v

<PROCEDURE DECLARATION>
2 <TYPE> "1™ 'PROC' <PROCEDURE HEADING> i
YBEGIN' *'DEC' <SERIAL NUMBER> "1" <TYPE> nim SRESULT';

<STATEMENT> "1"

@
TCOMMENT' 1.A.1. DENOTE ASSIGNMENTS OF RESULT TO <TYPE> PROCEDURE
IDENTIFIER;
'SDI
CSTATEMENT> "11" @ ? <IDENTIFIER> "1" := 2?2 2
==>
<STATEMENT> "11"
@ ? <IDENTIFIER>
@ <SERIAL NUMBER> "1" CTYPE> m™1" *RESULT' Z := ?
4
1SCe
4
3 "RETURN' <SERTAL NUMBER> m1" <KTYPE> ®1" 'RESULT®
*END'
4
@

*COMMENT®* 1.B.1. DENOTATION OF ARRAYS CALLED BY VALUES

lSD'
<TYPE> *'PROC' <IDENTIFIER> <FORMAL PARAMETER PART> "11" 3
SWALUEY. <IDENTIFIER LIST> #=1]1"
@ ? <IDENTIFIERD> "11" @ <IDENTIFIER TOKEN> % ? % 3
CSPECTFEICATION IPART> w]in
@ ? <SPECTFIER> "11" @ ? 'ARRAY' % <IDENTIFIER LIST>
a7 <IDENTIFIER> ®]]% 2 302
Z <BLOCK HEAD> "11" ; <COMPOUND TAIL> "11"

(0]
()
v

<TYPE> "1® *PROC' <IDENTIFIER> "1™ <FORMAL PARAMETER PART> "11";
*VALUE®' <IDENTIFIER LIST> ®11"

@ ? <IDENTIFIER> @ <SERIAL NUMBER> *"11" <SPECIFIER> "11" % ? % 3
<SPECIFICATION PART> m™11v
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<BLOCK HEAD> "11® ; 'DEC' <SERTAL NUMBER> ™11" <SPECIFIER> "11"

@ ISDREESARRAY! == CREAL' *ARRAY* *SC' % 3
ALLOCATE { <SERIAL NUMBER> "11" <SPECIFIER> "11"
a 'SD' “ARRAY® ==> YREAL" ‘*ARRAY' *SC?' % ,

EIDENTTIFIER> M]11%" ) 3
<COMPOUND TAIL> "11"
a

*COMMENT' 1.B.1.A.1. DENOTE OCCURRENCES OF THE VALUE ARRAY;

lle
CCOMPOUND TATLY> M111™ @ 2?2 <IDENTIFIER> "11% 2.8
=——
<COMPOUND TAIL> "111"
@ ? <IDENTIFIER> @ <SERIAL NUMBER> "11" <SPECIFIER> "11"
d 'SDY *ARRAYY ==> SREAL® YARRAY" *SCY % .3 2
2
'1SC
z
lSCl

*COMMENT' 1.B.2. DENOTATION OF FORMAL PARAMETERS CALLED BY VALUE;

15D
<TYPE> 'PROC' <IDENTIFIER> <FORMAL PARAMETER PART> "1l1" ;
*VALUE' <IDENTIFIER LIST> ™11"
@ ? <IDENTIFIER> *"11" @ <IDENTIFIER TOKEN> % ? % 3
<SPECIFICATION PART> "11"
d ? CSPECIFIERD> "11% CIDENTIFIER LISTY>
9 % <IDENTIETER> %11" 2. %.7
% <BLOCK HEAD> "11" ; <COMPOUND TAIL> "11"

[}
"
v

<TYPE> "1™ 'PROC® <IDENTIFIER> "1'" <FORMAL PARAMETER PART> "11";

SVALUE® <IDERVIFIER LIST> "11™ .

@ ? <IDENTIFIER> @ <SERIAL NUMBER> "]11" <SPECIFIER> "11" Z ? % 3

<SPECIFICATION PART> "11"

<BLOCK HEAD> "11" ; °'DEC* <SERIAL NUMBER> "11" <SPECIFIER> "11";
<SERIAL NUMBER> "11" <SPECIFIER> "™11" := <IDENTIFIER> "11" ;
<COMPOUND TAIL> %11

a

'COMMENT' 1.B.,2.A.1. DENOTE OCCURRENCES OF THE VALUE PARAMETER;S

ISDI
<COMPOUND TAIL> "111" @ ? <IDENTIFIER> "11" ? %
==>
<COMPOUND TAIL> "111"
d ? <IDENTIFIER> @ <SERIAL NUMBER> "™11" <SPECIFIER> "11"™ % ? %
ISCI
4

ISCI
%
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a
YCOMMENT' 1.C.1l. DENOTATION OF FORMAL PARAMETERS;

ISDl
<TYPE> *PROC' <PROCEDURE HEADING> "21"
2 <IDENTIFIER> ( <FNRMAL PARAMETER LIST>
@ <FORMAL PARAMETER> @ <IDENTIFIER> ®21" %
<PARAMETER DELIMITER> <FORMAL PARAMETER> "21"

2
2 <BLOCK HEAD> "21" ; <COMPOUND TAIL> "21"

]
I
v

<TYPE> "™1" 'PROC' <PROCEDURE HEADING> "21"
? <IDENTIFIER> "1" ( <FORMAL PARAMETER LIST>
@ <FORMAL PARAMETER> "21" % ?
¥ <BLOCK HEAD> "21™ ; 'DEC' <SERIAL NUMBER> "21" 'FORMAL® ;
<COMPOUND TAIL> "21"
a

*COMMENT® 1.C.1.A.1. DENOTE OCCURRENCES OF FORMAL PARAMETER;

ISD'
<COMPOUND TAIL> "121" @ ? <IDENTIFIER> "21" ? %
==)
<COMPOUND TAIL> "™121"
@ ? <IDENTIFIER> @ <SERIAL NUMBER> ™21"™ 'FORMAL®' % ? 2
ISCI
%
'*SC

*COMMENT' 1.C.2. DENOTATION OF FORMAL PARAMETERS;

15D
<TYPE> *PROC' <PROCEDURE HEADING>
@ <IDENTIFIER> ( <FORMAL PARAMETER> @ <IDENTIFIERD> "21% g ) ?
<BLOCK HEAD> "21" ; <COMPOUND TAIL> %21w

<TYPE> ™1" 'PROC' <IDENTIFIER> "ln ;

<BLOCK HEAD> "21" ; *DEC' <SERIAL NUMBERD> m2]w 'FORMAL"' 3
<COMPOUND TAIL> m21n

]

'COMMENT® 1.C.2.A.1. DENOTE OCCURRENCES OF FORMAL PARAMETER;

ISDI
- <COMPOUND TAIL> "121™ @ ? <IDENTIFIER)> uaim 2 %
<COMPOUND TAIL> m]121w
'SC'a ? <IDENTIFIER> @ <SERIAL NUMBER> n21" *FORMAIEEY 9 e
b 4
ISCI
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COMMENTY* 2,

1Spr

=>

@NI2)

INSERTION OF RESULT DECLARATION IN NON-<TYPE> PROCEDURES;

'PROCEDURE' <PROCEDURE HEADING> "1™ 3 <IDENTIFIER> "Im 2 g%
<STATEMENT> ®]®»

<PROCEDURE DECLARATION>
@i *PROC *

2
a

'BEG

<PROCEDURE HEADING> "™1"
IN®' *DEC' <SERIAL NUMBER> "1'" *RESULT';

CSTAYEMENTY> w]w

'END*

'COMMENT* 2.A.1. DENOTATION OF ARRAYS CALLED BY VALUE;

'SD'

"
[}
v

ISC'

*PROC' <IDENTIFIER> <FORMAL PARAMETER PART> *®11l" ;
SYALUE® <IDENTIFIER LIST> "]}lv

a?

<IDENTIFIER> "11" @ <IDENTIFIER TOKEN> % ? ¥ ;

<SPECIFICATION PART> ™11%

2 ?

<KSPECIFIER> ®11" & ? 'ARRAY' % <IDENTIFIER LIST>
a 2 SIDENTLLETERD> (N11% . 2-% 2

T <BLOCK HEAD> "11" ; <COMPOUND TAIL> ®11"

*PROC* <IDENTIFIER> "™1" <FORMAL PARAMETER PART> "11";
SYALDUE® <IDENTIFIER LIST> "11%

@ ? <IDENTIFIER> @ <SERIAL NUMBER> "11" <SPECIFIER> "1l1" % ? %

<SPECIFICATION PART> "11"

<BLOCK HEAD> "11"™ ; 'DEC' <SERIAL NﬁMBER) m1In <SPECTEIERD SIS

a

@ *SD' 'ARRAY' ==> 'REAL' 'ARRAY' 'SC*' % ;

ALLOCATE ( <SERIAL NUMBER> "11" <SPECIFIER> "11"

@ 'SD' 'ARRAY' ==> 'REAL' 'ARRAY*' 'SC' Z ,
CIDENTIFIER> %LI® 5)=;

<COMPOUND TAIL> "11"

'COMMENT®' 2.A.1.A.1. DENOTE OCCURRENCES OF THE VALUE ARRAY;

ISDl

==)

'SC

<CONPOUND TAIL> *111" @ ? <IDENTIFIER> "11" 7 %

<COMPOUND TAIL> "111"

@ ? <IDENTIFIER> @ <SERIAL NUMBER> "11% <SPECIFIER> ™11"
@ 'SD* 'ARRAY' ==> 'REAL' 'ARRAY' *'SC*' T % ?

z

141
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ICOMMENT® 2.A.2. DENOTATION OF FORMAL PARAMETERS CALLED BY VALUE

ISDI

+pROC* <IDENTIFIER> <FORMAL PARAMETER PART> "11" 3
tVALUE' <IDENTIFIER LIST> "11"
a ? <IDENTIFIER> "11" @ <IDENTIFIER TOKEN> % 2 % 3
<SPECIFICATION PART> ™11"
2 ? <SPECIFIERD> "11" <IDENTIFIER LIST>

2 ? <IDENTIFIER> "11" ? % ?
g <BLOCK HEAD> "11" ; <COMPOUND TAIL> e

==
1PROC! <IDENTIFIER> "1" <FORMAL PARAMETER PART> "11";
'VALUE® <IDENTIFIER LIST> "11"
@ ? <IDENTIFIER> @ <SERTAL NUMBER> "l11" <SPECIFIER> "11" % ? % 3
<SPECIFICATION PART> "11"
¢BLOCK HEAD> "11" ; 'DEC® <SERTAL NUMBER> "1™ <SPECIFIER> "11";
CSERTAL NUMBER> "11" <SPECIFIER> "11" := <IDENTIFIER> "11" 3
<COMPOUND TAIL> "11"
a
1COMMENT' 2.A.2.A.1. DENOTE OCCURRENCES OF THE VALUE PARAMETER;
. SD'
<COMPOUND TAIL> "111" @ ? <IDENTIFIER> "11" ? %
——
<COMPOUND TAIL> "111"
@ ? <IDENTIFIER> @ <SERIAL NUMBER> "11" <KSPECIFIER> "11" % ? %
. Sc'
k4
'SC
2
a

*COMMENT®' 2.B.1. DENOTATION OF FORMAL PARAMETERS;

L SD'
'PROC* <PROCEDURE HEADING> m™21"
@ <IDENTIFIER> ( <FORMAL PARAMETER LIST>
? <FORMAL PARAMETER> @ <IDENTIFIER> "21" %
<PARAMETER DELIMITER> <FORMAL PARAMETER> "21"
z?
2 <BLOCK HEAD> "21" ; <COMPOUND TAIL> m21"

"
)
v

'PROC* <PROCEDURE HEADING> "21%
@ <IDENTIFIER> ™1" ( <FORMAL PARAMETER LIST>
@ <FORMAL PARAMETER> "21" % ?
% <BLOCK HEAD> "21" ; *DEC' <SERIAL NUMBER> %w21m™ SFORMAL® ;
<COMPOUND TAIL> "21"%
2

'COMMENT® 2.B.1.A.1. DENOTE OCCURRENCES OF FORMAL PARAMETER;
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'Snl
<COMPOUND TAIL> "121" @ ? <IDENTIFIER> "21" ? %
==)
<COMPOUND TATIL> "121"
@ ? <IDENTIFIER> @ <SERIAL NUMBER> ®2]1" 'FORMAL' %2 ? %
ISCI
E

*COMMENT* 2.B.2. DENOTATION OF FORMAL PARAMETERS;

'Sn'

"
"
v

1SC

*PROC* <PROCEDURE HFADING>
d <IDENTIFIER> { <FORMAL PARAMETER> 3 <IDENTIFIER> "21" % ) 2 %
SBEAEK- HEADD B2 N5 <COMPOUND TATL 2L

TPROC® ZIDENTIFTER> "1"

<BLOCK HEAD> "“21" 3 'DEC' <SERTAL NUMBERD> ™21% TEQRMALY 3
<COMPOUND TAIL> "21"

@

*COMMENT' 2.B.2.A.1. DENOTE OCCURRENCES OF FORMAL PARAMETER;

L] SD'

<COMPOUND TAIL> "121" @ ? <IDENTIFIER> "21" ? %
==

SCOMPOUND TAIL> n]121%

d ? <IDENTIFIERD> @ <SERTAL NUMBERD> "21" *FORMAL' % ? ¥
. SC.

%
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*COMMENT' BLOCKTRS VERSION1O.
TO PRESERVE ORDER OF IDENTIFIERS. FOR USE WITH BLKHDTRS,

ARSEGTRS, ARLSTTRS, PRDECTRS, AND FORSTTRS;
<BLOCK>
a
YCOMMENT® 1. DENOTATION OF SIMPLE VARIABLES;
15pe

<BLOCK HEAD> "1™
@ ? <DECLARATION>

@ <TYPE> "1" <IDENTIFIER> "1" a <IDENTIFIER TOKEN> % % ?

T 3 <COMPOUND TAILD> "1™

]
I
v

<BLOCK>
dVSBLEOCKTHEAD> "™ ] Y

@ ? <DECLARATION> @ *DEC' <SERIAL NUMBER> "1" <KTYPE> %1% % ? %

<COMPOUND TATL> "1™
z
a

*COMMENT' 1.A.13

"Sp*
<BLOCK> "11" @ ? <IDENTIFIER> "1" ? g
==
<BLOCK> "])w

@ ? <IDENTIFIER> @ <SERIAL NUMBER> "l" CTYPE> win % ? %

'gCe
z
15C

'COMMENT' 2. DENOTATION OF ARRAYS;

ISDI
<BLOCK HEAD> "]n
@ ? <DECLARATION>
@ <TYPE> "1" *ARRAY' <IDENTIFIER> ®w|m
(/1" 1 : ALLOCATE ( <ACTUAL PARAMETER LIST> njn
@ <IDENTIFIER> ? % 1 /)
z?
3
<COMPOUND TAIL> mIm
==>
<BLOCK>
@ <BLOCK HEAD> w]n
2 ? <DECLARATION>

@ 'DEC' <SERIAL NUMBER> "1™ KTYPE> ®1w vARRAY' % ?

% 3 ALLOCATE ( <ACTUAL PARAMETER LIST> w)w

@ <IDENTIFIER> @ <SERIAL NUMBER> "1" <TYPE> "1" vARRAY' % ? % )

VERSNION7 TRANSFORMATIONS REWRITTEN
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<COMPOUND TAIL> *"1"
T
a

'COMMENT"® 2.A.13

ISDI

SBEAC I w] JwEa 9 <IDENTVIFIER> "I 2 2
==)

<BLOCK> "11"

@ ? <IDENTIFIER> @ <SERIAL NUMBER> "1" <KTYPE> ™]1" 'ARRAY' % ? %
1SCY

4
lsc'

'COMMENT' 3. DENOTATION OF LABELS, INCLUDING THOSE TN SWITCHES;
ISDI

<BLCCK HEAD> m™1*" ;3 <COMPOUND TAIL> "1"
@ ? <LABEL> @ <IDENTIFIER> ™1" 2 <IDENTIFIER TOKFN> % % : ? Z

==)
<BLOCK>
@ <BLOCK HEAD> "1™ ; °'DEC® <SERIAL NUMBER> *"1™ °*LABEL® 3
<COMPOUND TAIL> "1™
4
a
'COMMENT®* 3.A.13
'SpD!
<BLOCK> M11% 3 2 <IDENTIFLER> "1% 72 §
— 5
<SPLUCKD %1 1"
@ ? <IDENTIFIER> @ <SERIAL NUMBER> "1" 'LABEL' ¥ ? %
'SC
z
lSc'

'COMMENT® 4. DENOTATION OF <TYPE> PROCEDURE IDENTIFIERS AND
AND CREATION OF <SKIP STATEMENTD>S;

L SDI
<BLOCK HEAD> "1"
@ ? <DECLARATION>
@ <TYPE> "1" *PROC® <IDENTIFIER> "1™ ; <BLOCK> "1" % ?
Z ; <COMPOUND TAIL> "1™
==)»
<BLOCK>
@ <BLOCK HEAD> "1"
@ ? <DECLARATION>
@ "DEC' <SERIAL NUMBER> "1" <TYPE> "1" *'PROCEDURE®' % ?
z



146 (35122

ISKIP' <SERIAL NUMBER> "1" <TYPE> "1® *PROCEDURE' <BLOCK> "I" 3
<COMPOUND TAIL> "1"

z
a

TCOMMENT' 4.A.13

ISDI
<BLOCK> "11" @ ? <IDENTIFIER> "]1" ? %
==>
CBEQCKD - 1w
@ ? <IDENTIFIER>
@ <SERIAL NUMBERD> "1" <KTYPE> "1" *PROCEDURE®' % ?
k4
lscl
b 4
ISC'

'COMMENT' 5. DENOTATION OF NON-<TYPE> PROCEDURE [DENTIFIERS AND
AND CREATION OF <SKIP STATEMENT>S;

ISDI
<BLOCK HEAD> ®"1%
@ ? <DECLARATION> @ 'PROC' <IDENTIFIER> "1m ; <BLOCK> "1™ % ? %
3 <COMPOUND TAIL> "1%

[}
)
v

<BLOCK>
@ <BLOCK HEAD> ™1"
@ ? <DECLARATION>
@ "DEC' <SERTIAL NUMBER> "1" 'pPROCEDURE®' % ?
% ;3 'SKIP®' <SERIAL NUMBER> ™1m™ *pROCEDURE' <BLOCK> "l ;
<COMPOUND TAIL> m1"
z
a

‘COMMENT® 5.A.1;

'SpD

<BLOCK> "11" 3@ ? <IDENTIFIER> "I" ? %
==>

<BLOCK> "™11»

@ ? <IDENTIFIER> @ <SERIAL NUMBER> m]w 'PROCEDURE*' 3 ? %
ISCI
z

ISCI
'COMMENT® 6. DENOTATION OF SWITCH IDENTIFIERS;
ISDI

<BLOCK HEAD> "1w

@ ? <DECLARATION>
@ 'SWITCH' <IDENTIFIER> w1n 3 <IDENTIFIER TOKEN> %
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sSRESHINCHERTSTS> 1w
R
2 3 <COMPOUND TAIL> ©1v

<BLOCK>

@ <BLOCK HEAD> m1"»
@ ? <DECLARATION> @ 'DEC' <SERIAL NUMBER> "1" *SWITCH®* % ? % ;
*SWITCH' <SERIAL NUMBER> "1" *SWITCH' := <SWITCH LIST> "1" ;

ALLOCATE ( <SERTAL NUMBER> "1™ *SWITCH® ) ; <COMPOUND TAIL> %1%

2
a

'COMMENT® 6.A.1. MOVE THE <SWITCH LIST> TO THE ALLDCATE PROCEDURE

'SDI
<BLOCK HEAD> "11% ;
"SWITCH®' <IDENTIFIERD> "™11%" := <SWITCH LIST> m11v
@ SSWITCH LIST> a <EXPRESSION> "11% , <EXPRESSION> "12" % ? %
ALLOCATE ( <ACTUAL PARAMETER LIST> "11" ) ;3
<COMPOUND TAIL>

n
([}
A%

<BLOCK HEAD> "11" ;
YSWITCH' <IDENTIFIER> "11" 3= <SWITCH LIST> "11%
@ <SWITCH LIST> @ <EXPRESSION> "12" % ? % 3
ALLOCATE ( <ACTUAL PARAMETER LIST> "l11"™ , <EXPRESSION> "11" )
<COMPOUND TAIL> m1"
lScl

‘COMMENT' 6.A.2. MOVE THE LAST ELEMENT OF THE <SWITCH LIST> AND
DELETE THE OLD <SWITCH DECLARATIOND>;

*'Sp
<BLOCK HEAD> "11" ; *SWITCH® <IDENTIFIER> := <EXPRESSION> ™11"
ALLOCATE ( <ACTUAL PARAMETER LIST> "11" ) ; <COMPOUND TAIL>
==)>
<BLOCK HEAD> *"11" ;
ALLOCATE ( <ACTUAL PARAMETER LIST> "11" , <EXPRESSION> "11" )
<COMPCUND TAIL> "1"
'Sc'
z
a

"COMMENT® 6.B.13

'SDI
<BLOCK> "1" 3 ? <IDENTIFIER> "1" ? %
==Y
<BLOCK> "1®
@ ? <IDENTIFIER> @ <SERIAL NUMBER> "1" *SWITCH®' % ? %
|Scl
7
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"COMMENT® FORSTTRS VERSIONl. TRANSFORMATION TO MAKE LABELS IN THE
CONTROLLED STATEMENT OF A FOR STATEMENT LOCALS

<FOR STATEMENT>
a

'COMMENT® 1. DENDOTE THE FIRST LABEL LOCAL TO THE CONTROLLED STATEMENT.
(ANY OTHERS WILL BE DENOTED BY THE <BLOCK> TRANSFORMATIONS.);

ISDU

<FOR CLAUSE> "™1% <STATEMENT> "%

@ ? <LABEL> @ <IDENTIFIER> "1%" 3 <IDENTIFIER TOKEN> % % : ? %
==

<FOR CLAUSE> =17

"BEGIN® °*DEC®' <SERIAL NUMBER> "1" 'L ABEL® ;

<STATEMENT> ™"
@

'COMMENT® 1.A.1. DENOTE DCCURRENCES OF THE LABEL;

15D
<STATEMENT> ®11" @ ? <IDENTIFIER> "]1vw ? g
==
<STATEMENT> "11"
@ ? <IDENTIFIER> @ <SERIAL NUMBER> "1" 'LABEL' Z ? %
'SCe
2
"END'
1SC
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3.2 Transformations for For Statement Optimization

The for statement optimization problem in Algol 60 is broadly
concerned with detecting and removing from the controlled statement
of a for statement those calculations which can be guaranteed to be
invariant or linear with respect to the loop, in the hope of reducing
the overall execution time of the for statement. Since it is difficult
to define in general what is the (execution-time) optimal form of
a for statement*, much less to achieve it, the for statement optimiza-
tion problem might more properly be called the "for statement improve-
ment problem." Custom sanctions the former name, however. When
optimization is restricted to subscript expressions, as is largely
the case here, it is often called ''recursive address calculation."

A number of papers discussing the general problem of program
optimization have appeared in the literature since the publication
of the classic paper of Samelson and Bauer [35] which introduces
the concept of recursive address calculation. These include the
discussions of for statement optimization in Hawkins and Huxtable
[17], and in the work of the ALCOR group, Grau, Hill, and Langmaack
[15], Bayer, et al [5], and Gries, et al [16]. Optimization of
Fortran programs is discussed in three recent papers, those of Lowry
and Medlock [22], Allen [1], and Busam and Englund [8]. Perforce

the treatment of for statement optimization here is more closely

*
For example, removal of invariant calculations may increase the
execution time of a for statement if the numerical value of the until-
expression is such that the controlled statement is executed zero
times.
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related to the concepts of the former group, especially [15] and [51%

than to those of the latter.

The more recent papers above ([1] and [22], but also [17] to
some extent) are concerned with performing extensive flow analysis
on large segments of a program and attempting to optimize all suitable
segments, not simply those associated with the particular syntactic
notation provided for loops (e.g., the DO statement in Fortran) .

The descriptions of these processes tend to be quite complex and
dependent on specific language constructions and array addressing
schemes. The goal of the transformational description of for statement
optimization presented here is rather different: It is to show that
transformations can provide a reasonable and notationally convenient
grammatical description of the (partially optimized) meaning of

the syntactic construction for statement.

In the transformations presented here, attention is restricted
to implementing recursive address calculation in for statements having
a single step-until-element. (However, invariant step-and-until-
expressions are also removed from the loop.) The reasons for this
restriction are similar to those given in [15], namely that removal
of other invariant or linear calculations is an editorial function
that could as well be performed by the programmer. Hawkins and
Huxtable [17] discuss the possibility of bringing other similar <for

clause>s, e.g.:

for i := itm vhile B do
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under the optimization of step-until clauses; transformations could
obviously be written to take care of such specific cases.

The details of the optimization process are discussed in the
following subsection, while the for statement optimization trans-

formation list itself is discussed in section 3.2.2.
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3.2.1 Theory of For Statement Optimization

The optimization of a for statement may be divided into three sub-
tasks: determination that the for statement is suitable for optimization
(i.e., that invariant or linear calculations potentially can exist);
determination that the subscripts of a particular subscripted variable
in the controlled statement are linear or constant; and modification of
the for statement to introduce recursive address calculation for such
variables.

For purposes of the present discussion, a for statement is considered
suitable for optimization if:

(1) The <for clause> consists of a single <for list element> of
the step-until type.

(2) The loop variable is an integer simple variable (or integer
formal parameter called by value).

(3) The loop variable is not assigned in the controlled statement.

(4) The step-expression does not contain the loop variable, nor
the identifier of any variable assigned in the controlled
statement.

(5) The for statement contains no procedure or function calls
beyond the delimiter step (except for calls to standard functions,
known not to cause side effects).

(6) The for statement contains no instances of a formal parameter
called by name (except as an array identifier) beyond the
delimiter step.

These conditions guarantee that the step-expression is constant with
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respect to the loop, that adding it to the loop variable always
produces the same increment in the loop variable, and that no side-
effects can occur to cause hidden violations of this guarantee.
(In addition to the above checks, the until-expression can be examined,
and, if it does not contain the loop variable or a variable assigned
in the controlled statement, it may be calculated before entering
the loop.)

Subscripted variables occurring in the controlled statement
of a for statement are classified as constant, linear, or general
with respect to the loop according to the following criteria:

(1) A variable containing a variable assigned in the controlled
statement is general.

(2) A variable declared in a block contained in the controlled
statement is general.

(3) A variable containing a subscripted variable is general.

»

(4) Of the remaining variables, a variable not containing the loop
variable is constant.

(5) Of the now remaining variables, a variable is linear provided
each of its <subscript expression>s which contains the loop
variable meets the following conditions:

(a) It contains only one instance of the loop variable.
(b) It does not contain: a real variable; a constant having
an <exponent part> with negative exponent, or a <decimal

fraction>; the operators /, // (integer division), or
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'"POWER'; a <conditional expression>; or a <procedure

designator>.

(6) Any remaining variables are general.

Some of these criteria may be regarded as overly restrictive (for
example, a[i+i] and a[i + cos(0)] are classed as general even though
they actually are linear). In each of these cases what is essen-
tially an engineering judgement has been made: that the frequency

of occurrence of the particular case does not justify the increased
complexity produced by refining the applicable criterion.

Recursive address calculation can be applied to the subscripted
variables marked linear or constant according to the above criteria.
To implement it, reference primaries and address variables are intro-
duced, thereby avoiding explicit use of the addressing polynomial
of an array. (This is similar to '"Method I" of section 5.3.1 of
[15].) The reasons for doing this are twofold: First, it keeps
the transformational description of for statement optimization inde-
pendent of the particular addressing scheme used for arrays (so
long as that addressing scheme remains a linear function of the array
subscripts). Second, it is appropriate for use with transformations
because their lack of arithmetic capability makes it difficult to
use them to reference the subscript range information contained in

the "information vector" used with the addressing polynomial.

Reference primaries are defined by the production:

<primary> ::= ref <variable>
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Their value is the address of <variable>. Address variables are

defined by:

<variable> ::= val <simple variable>

They denote that a value is to be fetched from or stored into the
address which is the value of <simple variable>. Using reference
primaries and address variables, the base address and increment
for a subscripted variable a[i] appearing in a statement con-

trolled by the <for clause>:

for i := x step y until z do

are calculated as follows:

1 = x3

base := ref a[i];

i = xby;

increment := ref a[i]-base; .

Occurrences of a[i] in the controlled statement are replaced by

the address variable val base, and the statement:

base := base + increment

is placed at the end of the loop along with the statement incrementing
i. (Appropriate declarations for the integer variables base and
increment must also be introduced.) Subscripted variables constant
with respect to the loop are treated similarly, but the variable

increment and the calculations in which it appears are omitted.

155
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The above method of recursive address calculation unfortunately
becomes rather complicated when applied to nested for statements,
because it is not possible to separate the dependence of the reference
primaries on the various loop variables as can be done for the method
of addressing polynomials. This problem is discussed at some length

in section 5.4 of [15].
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3:2:2 The For Statement Optimization Transformation Set

At the end of this section is listed the for statement optimiza-
tion transformation set. It consists of but a single <statement>-
transformation list which performs both the detection and optimization
of suitable for statements and the expansion of the remainder in
analogy with section 4.6 of the Revised Report. Extensive use is
made of the ability of subtransformation sequences to localize the
application of certain transformations, thereby avoiding pointless
application to unsuitable statements.

The first transformation and the 1.A subtransformation list
check the criteria for suitability given in section 3.2.1. Statements
found to be unsuitable are marked with the marker forl, and are trans-
formed later by transformations 2, 3, or 4. The 1.B subtransformation
list then expands the <for clause> in a manner compatible with the
1.C subtransformation list and the later introduction of recursive
address calculations. As a result of this expansion the until-
expression is calculated before entering the loop. The 1.C subtrans-
formation list examines the until-expression, and if it contains
the loop variable or a variable assigned in the controlled statement
it moves the calculation back into its proper place in the loop.

In addition the 1.C subtransformation list moves and replicates the
controlled statement to facilitate checking whether a subscripted
variable contains a variable assigned in the loop. This check and

the check for subscripted variables declared in blocks contained
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in the controlled statement are performed by the 1.D subtransformation

list. The 1.E subtransformation list then performs the remainder of

the check to determine if a subscripted variable is constant, linear,
or general with respect to the loop (cf. section 3h2el)c

The 1.F and 1.G subtransformation lists perform the actual

introduction of recursive address calculation. The former optimizes
subscripted variables marked linear, while the latter optimizes
those marked constant. The notation, "use of <primary> is an arti-
fact," in the comments preceding subtransformations 1.F.1.A.2 and

1.G.1.A.2 concerns an error in the grammar of section 6.1; address

variables were introduced via the production:
<primary> ::= val <variable>

instead of:
<variable> ::= val <simple variable>

(Also, addr would probably be preferable to zgl)*. If the grammar were
corrected, subtransformations 1.F.1.A.1 and 1.F.1.A.2 could be combined
(as could 1.G.1.A.1 and 1.G.1.A.2). Subtransformations 1.F.1.A.3

and 1.G.1.A.3 apply when the variable to which recursive address
calculation is being applied has already been optimized in an inner

loop.

*
U;for?unately, the computation of the tables required by the parsing
algorithm from the grammar of section 6.1 required 3300 seconds on

the IBM 360/75; therefore it was d i i i
s 3 was deemed impracticable to modify the
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Transformations 2-8 of the <statement>-transformation list
expand unsuitable for statements in a manner analogous to their
definitions in section 4.6 of the Revised Report (see also the
example at the end of section 1.1.2). The indexed symbol for "1"
in these transformations matches either for or forl. Transforma-
tion 9 removes labels from a for statement and places them on a
compound statement containing the for statement, so that transforma-
tions 1-8 can apply.

One should note that the for statement optimization transformation
set presupposes the application of the identifier denotation transfor-
mation set described in section 3.1. This is necessary, for example,
to permit the check that the loop variable of a suitable for statement
is an integer simple variable, and to permit the check that a subscript
containing the loop variable does not contain any real variables.

It should also be noted that this for statement optimization trans-

»
formation set does not do an especially good job of optimizing nested
for statements, since it does not attempt to move the recursive address
calculation of a subscripted variable further out in the nest than
the innermost loop at which the variable is linear. This problem
requires further study to develop appropriate transformations.

The for statement optimization transformation set is listed below;
examples of the application of the transformation set sequence con-
sisting of the identifier denotation transformation set and the for

statement optimization transformation set are given in section 6.3.

158
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ONVERT FOR STATEMENTS
*COMMENT® FOROPTV7. TRANSFORMATIONS TO C :
INTO STATEMENTS, OPTIMIZING THOSE WHICH ARE SUITABLE;

CSTATEMENT>

a

YCOMMENT® 1. ANALYZE STMPLE FOR-STEP-UNTIL STATEMENTS FOR
OPTIMIZABILITY;

15p*

'FOR' <VARIABLE> "1" @ <SERTAL NUMBER> "1" 'INTEGER' % :=
<EXPRESSION> "1™ *STEP' <EXPRESSION> ®2" SUNTIL®
<FXPRESSION> "3n" ¢pD* <STATEMENT> m1®

{[]
"
A%

<STATEMENT>
@ 'FOR' <VARIABLE> "1™ := <EXPRESSION> %1% 'STEP®*

CEXPRESSION> m2m *UNTIL' <EXPRESSION> m3» 'pQe
CSTATEMENT> "m1»

z

a

'COMMENT® 1.A.1l. REMOVE UNARY PLUS FROM STEP EXPRESSION;

ISDI
'FOR® <VARTABLE> := <EXPRESSINN> *STEP' + <TERM> m]m
*UNTIL®' <EXPRESSION> *DO*

<STATEMENT>
==
'FOR' <VARIABLE> "1" := CEXPRESSION> "1m 'STEP? <TERM> n]w
'UNTIL® <EXPRESSION> "3m spQe
<STATEMENT> w1
ISCI

'COMMENT® 1.A.2. REMOVE FROM CONSIDERATION ANY STATEMENT IN
WHICH SIDE EFFECTS COULD ARISE VIA PROCEDURE OR <TYPE>-
PROCEDURE CALLS;

1SpY
<FOR STATEMENT> m1]®
@ 'FOR' KVARIABLE> := <EXPRESSTON> ? <IDENTIFIER> ®]]"
@ <SERIAL NUMBER> ? *PROCEDURE®' % ?
z
==)
<FOR STATEMENT> %]]n
@ 'FOR' @ 'FORL' % <VARIABLE> "]m := <EXPRESSION> ®1n
? <IDENTIFIER> "1]1m 2
%
'Sc'

'COMMENT® 1.A.3, SIMILARLY FOR FORMAL PARAMETERS WHICH ARF



(Seevd) 161

USED AS SIMPLE VARIABLES;

ISDI
CFOR STATEMENT>. %“11n
@ 'FOR' <VARIABLE> := <EXPRESSION> ? <SIMPLE VARIABLE> *"l1"
® <SERTAL NUMBER> *FDRMAL' % ?
k4
==
CFOR  STATEMENT> ®11%
@ 'FOR' @ *FOR1*' % <VARTABLE> "1" := <EXPRESSION> "1"
PECSINPLE" VARIABLE> %11% ?
s -
.SC'

'COMMENT* 1.A.4. SIMILARLY FOR FORMAL PARAMETERS WHICH ARE
USED AS PROCEDURE IDENTIFIERS (CALLED <IDENTIFIFR 1> BY
SYNTAX) 3

(KL
CEOR. STATEMENTY> %117
o "EARTLVARIABL E> 2= <EXPRESSION> ? <IDENT-IFIER 1> n"ll%
@ <SERIAL NUMBER> *FORMAL*' % ?
k4
—
SFOR STATEMENT> “11"%
@ *PORY @ "FOR1' % <VARIABLE> "1" := JEXPRESSIOND> %1%
F-<IDENTIFLIER 1> "11"™ ?
%
sSCe

*COMMENT' 1.A.5. SIMILARLY FOR A STATEMENT IN WHICH THF LOOP
VARIABLE [S ASSIGNED TO;
'SPy
SEFORVCVARTABLE> == <FOR LIST> "i1"™ *DO" <STATEMENT>
@ ? <VARIABLE> "1" := ? %
==>
SELRL S <UARIABLE> Y17 := <FOR L1S5T> *11" 'DD*
CSTATEMENT>. "1™
lsc'

*COMMENT* 1.A.6. REMOVE FROM CONSIDERATION STATEMENTS IN
WHICH THE STEP EXPRESSION CONTAINS THE LOOP VARIABLE;S

1sp*
'FOR' <VARIABLF> := <EXPRESSION> °*STEP'
<EXPRESSION> @ ? <VARIABLE> "1" ? %
SUNTIL® <EXPRESSION> *'DO' <STATEMENT>

"FORL' <VARIABLE> "1% := CEXPRESSION> "1™ 'STEP®
CEXPRESSION> "2" 'UNTIL' <EXPRESSION> "3" *pO°
<STATEMENT> m1"
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ISCI

YCOMMENT® 1.A.7. REMOVE FROM CONSIDERATION STATEMENTS IN
WHICH THE STEP EXPRESSION CONTAINS A VARIABLE ASSIGNED

INSIDE THE LOOP;

15
YFOR' <VARIABLE> := <EXPRESSION> 'STEP'

CEXPRESSION> @ ? <IDENTIFIER> "11" ? %

YUNTIL' <EXPRESSION> *'DO*
CSTATEMENT> @ ? <VARIABLE> @ <IDENTIFIER> "11" ? % := ? ¥

==)»
TFOR1' <VARIABLE> "1™ := <EXPRESSION> "1" °*STEP®
<EXPRESSION> ™2™ 'UNTIL®' <EXPRESSION> "3" *DO°*
CSTATEMENTD> "1™

lscl

4

a

*COMMENT®* 1.B.1. EXPAND STEP-UNTIL CLAUSES IN ANALOGY WITH
SECTION 4.6.4.,2 OF THE REVISED REPORT, LEAVING PLACES
TO INSERT ADDITIONAL STATEMENTS GENERATED IN THE COURSE
OF OPTIMIZATION. EXPAND THE CASE OF A POSITIVE INTEGER

STEP FIRST;

LKL
'FOR' <VARTABLE> := <EXPRESSION> °*STEP®
CUNSIGNED INTEGER> "11" 'UNTIL' <EXPRESSION> 'DO*
<STATEMENT>
——

'BEGIN1® 'DEC®' <SERTAL NUMBER> "11" *LABEL®' ;
'DEC' <SERTAL NUMBER> "12" 'INTEGER' ;
'BEGIN® <VARTABLE> "1" := CEXPRESSION> "1w;
<SERIAL NUMBER> "]12" ¢INTEGER® ,.= <EXPRESSION> w3w
SENDY =5
<STATEMENT> nwl» ;
<VARITABLE> "1™ ,,= <VARIABLE> "1" + <UNSIGNED INTEGER> "11"
<VARIARLE> ™1" ,,= CVARIABLE> "1™ - <UNSIGNED INTEGER> "11m
<SERIAL NUMBER> ™11" *LABEL' :
'IF' KVARIABLE> "1" <= <SERIAL NUMBERD> "]12% s [NTEGER® 'THEN®
'BEGIN' <VARIABLE> "1" ,,= <VARIABLE> "]n
+ <UNSIGNED INTEGER> "11" ;
GO TO' <SERIAL NUMBER> ™11" v ABEL®
"END*
*END?
'SCI

- v

'COMMENT® 1.B.2. EXPAND A NEGATIVE INTEGER STEPS

'SD'
'FOR' CVARIABLE> := <EXPRESSION> *STEP®
~ CUNSIGNED INTEGER> "11"™ *UNTIL' <EXPRESSION> 'DO*
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<STATEMENT>
==
*BEGINL® “DECY <SERIAL NUMBER> "11" VYLABEL® ;3
'DEC*' <SERIAL NUMBER> %“12" "[NTEGER' ;
YBEGIN' <VARIABLE> "1" := <EXPRESSION> "1" ;
<SERTAL NUMBER> "12" ¢ [NTEGFR' ,.= <EXPRESSION> "3"»
SEND" 3
CSTATEMENTY> "1* ;
<VARIABLE> "1%" ..= <VARIABLE> "1" - <UNSIGNED INTEGER> "l1"
<VARIABLE> "1" ..= <VARIABRLE> "1™ + <UNSIGNED INTEGER> "l1"
<SERIAL NUMBER> "1]1" *_ABEL' :
SIE® CSNARIABLE> ¥1n >— <LSERIAL NUMBER> m12v YINTEGERY *THEN?®
*BEGIN' <VARTABLE> "1" ,.= <VARIABLE> "1"
- <UNSIGNED INTEGER> "11" ;
'GO TO®' <SERIAL NUMBER> "11" *LABEL®
EEND "
SEND®
*SC

*COMMENT® 1.B.3. EXPAND THE GENERAL STEP ELEMENT;

ISDI
"FOR' <VARIABLE> := <EXPRESSION> 'STEP'
<EXPRESSION> *UNTIL' <EXPRESSION> *'DO*
<STATEMENT>
==
SREGINI® *BEC® <SERTAL NUMBER> m11% *LABEL' 3
'DEC* <SERIAL NUMBER> %12" °INTEGER®' 3
'DEC* <SERIAL NUMBERD> "13" 'INTEGER®' ;
*BEGIN® <VARIABLE> "™1" := <EXPRESSION> "1";
<SERIAL NUMBER> "12" *[NTEGER' ..= <EXPRESSION> "2%";
<SERIAL NUMBER> "]13" 'INTEGER' ..= <EXPRESSION> "3%
YEND' 3 S
CSTATENENT> ™1™ 5
<VARIABLE> "1" ..= <VARIABLE> "1" +
<SERITAL NUMBER> "12" ' INTEGER' ;3
<VARIABLE> "1" ,.= <VARIABLE> "1" -
<SERIAL NUMBER> "12" ' [INTEGER®' ;
<SERIAL NUMBER> ™11" 'LABEL' :
YIFY ( <VARIABLE> "1" - <SERIAL NUMBER> "13" *INTEGER® )
* SIGN ( <SFRIAL NUMBER> "12" 'INTEGER' ) <= 0
TIHEN?
'BEGIN' <VARIABLE> "1" .,.= <VARIABLE> "1©
+ <SERIAL NUMBER> "12" 'INTEGER®' ;
G0 TO'* <SERIAL NUMBER> "11"™ *LABEL"®

*END"
YEND®
150
%
2

'COMMENT' 1.C.1. IF UNTIL EXPRESSION CONTAINS LOOP VARIABLE

-e e
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AND SHOULD NOT BE CALCULATED IN ADVANCE, REMOVE SAID
CALCULATION;

L L]
g <BLOCK HEAD> "11™ ; *DEC' <SERTIAL NUMBER> "11" *INTEGER® 3
'BEGIN' <COMPOUND TAIL> ™11™
MPOUND TAIL>
g ;CSSTATFMENT> wll® ; <SERIAL NUMBER> "117" 'INTEGER®
..= <EXPRESSION> @ ? <VARIABLE> "1" ? % 'END*
2
% 3 <STATEMENT> 3
SSTATEMENT D> M1 2% s
< STTANEMENTDER 13T
SEABEL> 11 2
Bl <EXPRESSIOND> ] 11
a ? <PRIMARY> @ <SERIAL NUMBER> "11" °*INTEGER®* % ? Z 'THEN'
'BEGIN' <COMPOUND TAIL> "12"
*END?
==>
<BLOCK HEAD> 11" 3
*BEGIN' <COMPOUND TAIL> "11"
@ ? <COMPOUND TAIL> @ <STATEMENT> "11" 'END' % % ;3
YBEGIN®' 'END' ; <STATEMENT> %12" ;
'BEGIN' 'END® 5 <STATEMENT> "13% ;
<UABRELD> n]jw s
RIEYECEXPRESS TGN
@ ? <PRIMARY> @ ( <EXPRESSION> "3" ) % ? % *THEN'
'"BEGIN?
'"BEGIN' <STATEMENT> "1% ; <STATEMENT> "1™ *END* ;
<COMPOUND TAIL> ®12"
"END'
lsc'

'COMMENT' 1.C.2. [IF UNTIL EXPRESSION CONTAINS A VARIABLE
ASSIGNED IN THE LOOP AND SHOULD NOT BE CALCULATED IN
ADVANCE, REMOVE SAID CALCULATION;

ISDI
<BLOCK HEAD> ™11" ; °*DEC® <SERIAL NUMBER> “11" ¢ INTEGER' ;
'BEGIN® <COMPOUND TAIL> "™11"
a ? <COMPOUND TAIL>
@ <STATEMENT> "11" ; <SERIAL NUMBER> "11"™ ' INTEGER'®
«o= <EXPRESSION>

@ ? <VARIABLE> @ <IDENTIFIER> "11" ? % ? % 'END’
%

% 3 <STATEMENT>

@ ? <VARTABLE> @ <IDENTIFIER> "11" ? % := 2 % ;
<STATEMENT> n]2w ;

A
<STATEMENTD> #]13n
<LABEL> "11v :

'IF* CEXPRESSION> n1}n
@ ? <PRIMARY> @ <SERIAL NUMBER> ™11" 'YINTEGER® % ? % 'THEN®
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*BEGIN' <COMPOUND TAIL> m]2%
‘END*
==)
<BLOCK HEAD> ™11" ;
"BEGIN' <COMPOUND TAIL> "l11"
@ ? <COMPOUND TAIL> @ <STATEMENT> "11" *END* % % ;
'BEGIN®' 'END' 3 <STATEMENT> %]2% ;
YBEGIN®' YEND®* ; <STATEMENT> w]13n
CLABELD> ®11™ 2
VIFY <EXPRESSIOND "®11%
@ ? <PRIMARY> 3@ ( <EXPRESSION> "3" ) % ? % °THEN®
*BEGIN'
*BEGIN' KSTATEMENT> "1% ; <KSTATEMENT> ™)™ *END* 3
<COMPOUND TAIL> ®]12%
YEND'
.Scl

'COMMENT® 1.C.3. [IF UNTIL EXPRESSION COULD BE CALCULATED IN
ADVANCE, MOVE AND REPLICATE THE CONTROLLED STATEMENT AND
INSERT DUMMY COMPOUND STATEMENTS AS REQUIRED;

ISDI
<BLOCK HEAD> "11" ; <COMPOUND STATEMENT> "11" ;
<STATEMENT> ; <STATEMENT> "11" ; <STATEMENT> m12% ;
<LABEL> "11™ :
CIF CLAUSED #1]1% "BEGIN® <COMPOUND TAIL> "11%
'END’
==
<BLOCK HEAD> ™11%" ; <COMPOUND STATEMENTY> ®11% ;
'BEGIN' *END' ; <STATEMENT> "11" ;3
*BEGIN®' 'END* 3 <STATEMENT> "12" ;
<LABEL> "11% :
<IF CLAUSE> "11"
*BEGIN'
'BEGIN® <STATEMENT> "1" ; <STATEMENT> ®1"™ °*END' ;
<COMPOUND TAIL> "11"
LEND?
'Scl
%
2

»

YCOMMENT' 1.D.1. MARK ALL SUBSCRIPTED VARIABLES IN THE
CONTROLLED STATEMENT WHICH CONTAIN THE IDENTIFIERS OF
VARIABLES ASSIGNED TO;

15p*
<BLOCK HEAD> "11" ; <STATEMENT> "11" ; <STATEMENT> ™12% ;3
CSTATEMENT> *13" ; <STATEMENT> "14" ; <STATEMENT> ®15" 3
SLABELY>. "11%™ = ‘
<IF CLAUSE> %]11%
*BEGIN'
*BEGIN®' <STATEMENT> "16"
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2 ? <VARIABLE> "11" @ CIDENTIFIER> "11" 2 % == ? T3
<STATEMENT> "17"
YEND' 3
<COMPOUND TAIL> "11"
YEND"

AD> "11" ; <STATEMENT> "11" 3 <STATEMENT> "12" ;
<BLDE§T:$EMENT> wp3n ; KSTATEMENT> "14" 3 <STATEMENT> "15" 3
CUABEL Y] 10192

CIFSCLEAUSE> "11™
'BEGIN'

1BEGIN' <STATEMENT> "16"

@ ? <VARIABLE> "11" ..=? % 3§
<STATEMENT> "17"

[}
(]
v

a
YCOMMENT® 1.D.1.A.1. MARK THE VARIABLES;

'SDI
<STATEMENT> "111"
@ ? <SUBSCRIPTED VARIABLE>
@ <IDENTIFIER> "111" (/ <SUBSCRIPT LIST> "111"
@ ? <IDENTIFIER> "11" ? % /)
z.2
z
==>
<STATEMENT> ™111"%
@ ? <SUBSCRIPTED VARIABLE>
@ <IDENTIFIER> "111" *(/1"' <SUBSCRIPT LIST> "111" /)

2
ISCI
2
SENDY S
<COMPOUND TAIL> *11"
PEND®
‘Sc.

‘COMMENT' 1.D.2. REMOVE THE COPY OF THE CONTROLLED STATEMENT
USED TO CHECK ASSIGNMENT, AND MARK SUBSCRIPTED VARIABLES
DECLARED IN BLOCKS WITHIN THE CONTROLLED STATEMENT;

lSD'
<BLOCK HEAD> "11"™ ; <STATEMENT> "11" ; <STATEMENT> "12" ;
KSTATEMENT> "13"™ ; <STATEMENT> "14" ; <STATEMENT> "15" ;
SCABELD> wlTw <
SIESCIEAUSEDS o0] 1%
YBEGIN'
'BEGIN® <STATEMENT> ™16" ; <STATEMENT> "17" 'END® ;
<COMPOUND TAIL> "11v
'END'
==
<BLOCK HEAD> ™11"™ ; <STATEMENT> "11" ; <STATEMENT> w12 ;
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<STATEMENTD> "13" 5 <STATEMENT> ®14n ; CSTATEMENT> "] sn

SLABEL> ™=]1%
<IF CLAU
*BEGIN2*

2

'COMMENT® 1.
DECLARED
STATEMEN

*'SD*

oy e
<STATEMENT> ®] 7w

D.2.A.1. LOCATE SUBSCRIPTED VARIABLES
IN BLOCKS CONTAINED IN THE CONTROLLED
ivs

CSTATEMENT> »]]11v

a ? <8LD
a '8

Z
??
-
T
==>
<STATEME
a ? <BLO
a-
z?
z
1SCe
% 3 <COMPOUN
"END"
lscl
z
?

*COMMENT® 1.E.1l.
VARIABLES AS
VARIABLE ( *

ISDI
<BLOCK HEAD>
<STATEME
<LABEL> "11"
*BEGIN2*
*END*

"
n
v

<BLOCK HEAD>
<STATEME
SEABELY> "11w
*BEGIN'
a

CK HEADD> ™) 1)"
EGIN' ? 'DEC* <DENOTATION>
@ <SERIAL NUMBER> "111" ? 'ARRAY' % ?
<COMPOUND TAIL> *"111"
<SUBSCRIPTED VARIABLE> "111"
@ <DENOTATION> "111"
@ <SERIAL NUMBER> "il1" 2?2 % (/ ?
z?

NT> "111™

CK HEAD> "111" ; <COMPOUND TAIL> "1l1l1"%
<SUBSCRIPTED VARIABLE> *"l11"

A <ODENOFATIOND> “111" %(/1¢ 2?2 3 7

D TAIL> "117

MARK THE REMAINING UNMARKED SUBSCRIPTED
GENERAL ( '(/1' ), LINEAR IN THE LOOP
(/72" )y OR CONSTANT ([ *(/3* )3

11" 3 <KSTATEMENTD> %1l®" ; <STATEMENT> "12% ;
N> =13% 5 <STATEMENT>. %14% 5 KSTATEMENT> ™] 5%

S LE, CLAUSED "11%

<STATEMENT> "16" ; <COMPOUND TAIL> "11"

"11" ; KSTATEMENT> "11% ; <STATEMENT> %]12¢
NTD> %138 5 SSTATEMENTY> "14" ; <STATEMENT> "15%
SCIE ELAUSE> "1™
<STATEMENT> ™]16"

-
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'COMMENT' 1.E.l.A.l.

ISDI

(8:2.12),

CHECK A SUBSCRIPTED VARIABLE BY
CHECKING THE EXPRESSIONS IN IT3

CSTATEMENT> "111"
@ ? <SUBSCRIPTED VARIABLE> "111"
3 <IDENTIFIER> (/ ? <VARIABLE> "1" ? /) z?

2

<STATEMENT> "111"
2 ? <SUBSCRIPTED VARIABLE> "111"

a

YCOMMENT® 1.E.l.A.l.A.1. [IF THE SUBSCRIPTED VARIABLE
CONTAINS ANOTHER SUBSCRIPTED VARIABLE, MARK IT
GENFRAL;

ISD'
CIDENTIFIER> "115" (/ <SUBSCRIPT LIST> "115"
@ ? <SUBSCRIPTED VARIABLE> ? % /)
==
<TDENTIELER> ] LW e (/] 2 CSUBSCRIPTRIST SIS & "=/
*Sce
k4
a

'COMMENT®' 1.E.l.A.1.B.1l. [IF THE EXPRESSION BEING EXAMINED
CONTAINS THE LOOP VARIABLE EXAMINE IT FOR LINEARITY;

ISD'
SIDENTIFIER> "115% (/ <SUBSCRIPT LIST> "]115%
@ ? <SUBSCRIPT EXPRESSION> "]15"
@ '"(3' ? <VARIABLE> "1" 2?2 % ?
z /)

i
)
A%

SIDENTTEIER> AT S ( /- CSYRSCRIPTLTST> anijiisn
@ ? <SUBSCRIPT EXPRESSION> "115"
a

'COMMENT® 1.E.1.A.1.B.1.A.1. LOOK FOR THWO
OCCURRENCES OF THE LOOP VARIABLE;

'SD'

'(3' <EXPRESSION> "115"

@ ? <VARIABLE> "1" ? <VARIABLE> "1" ? % )
==)

'(1' <EXPRESSION> ™115" )
ISCI

'COMMENT® 1.E.1.A.1.B.1.A.2. LOOK FOR A REAL VARIABLE;
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.SD.

¥{3* <EXPRESSION> w]l]l5n

a ? CIDENTIFIER> 3 ? "REAL®* 2 £ 2 %)
w2

S{1% SEXPRESSION> ®"11S" )
L

'COMMENT* 1.E.1.A.1.B.1.A.3. LOOK FOR A DECIMAL
FRACTION;

L] SD'

*(3* <EXPRESSION> "™115™ @ ? <DECIMAL FRACTION> ? % )
==

'{1* <EXPRESSION> "]115" )

'Scl
*COMMENT®' 1.E.1.A.1.B.1.A.4. LOOK FOR A NEGATIVE
EXPCNENT ;
'S
*(3* <EXPRESSION> "115"%
@ ? <EXPONENT PART> @ ' - <UNSIGNED INTEGER> % ? % )
==
‘{1' <EXPRESSION> "115" )
'Scl

*COMMENT' 1.E.l1.A.1.B.1.A.5. LOOK FOR DIVISION;

'SDI

(3" <EXPRESSIGN> “LI5% @ 2.7 ?'%")
—

¥11t CEXPRESSION> *115% )
1sce ;

*COMMENT® 1.F.1.A.1.B.1.A.6. LOOK FOR INTEGER DIVISION;

1gpe

13 SEXPRESSION> ML) SU@ 122075228 7)
==

f11* <EXPRESSION> "115" )
'SC

*COMMENT' 1.E.1.A.1.B.1.A.7. LOOK FOR EXPONENTIATION;

ISDI

13 SEXPRESSIOND #115" @-2s%PONERY 1228 7)
=

541" <EXPRESSION> "115" )
150

*COMMENT* 1.E.1.A.1.B.1.A.8. LOOK FOR A CONDITIONAL
EXPRESSION;
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. ’
5 139 CEXPRESSION> "115" @ ? <IF CLAUSE> ? % )
==
*(1' <EXPRESSION> "115" )
.SCU
TCOMMENT® 1.E.l.A.1.B.1.A.9. LOOK FOR A PROCEDURE
DESIGNATOR;

ISDQ

1{3' CEXPRESSION> ™115"

2 ? <PROCFDURE DESIGNATOR> ?2 %)
==>

'(1' <EXPRESSION> "115" )
lScl

YCOMMENT® 1.E.l.A.1.B.1.A.10. [IF NONE OF THE ABOVE,
MARK THE EXPRESSION LINEAR;

'SD'
"(3* CEXPRESSION> "™115" )

*(2' <EXPRESSION> "115" )

ISCI

'COMMENT® 1.E.1.A.1.B.2. [IF THE EXPRESSION BEING
EXAMINED DOES NOT CONTAIN THE LOOP VARIABLE,
MARK [T LINEAR;

ISD'

CIDENTIFIER> "115" (/ <SUBSCRIPT LIST> "115"

@ ? <SUBSCRIPT EXPRESSION> "115" 3 *(3* ? 2?2 % /)
==>

CIDENTIETER> #1152 (7 <SUBSCRIPT ST ST> W] 5

@ ? <SUBSCRIPT EXPRESSION> "115" a *(2* ?2 T ? % /)
ISCI

'COMMENT® 1.E.1.A.1.B.3. MARK NEXT EXPRESSION FOR ANALYSIS;

lSDl
STDENVIFIER> ®115" (/ <SUBSCRIPT L]ST>n] 15
@ ? <EXPRESSION> @ '(2' <EXPRESSION> ™115" ) % ,
SEXPRESSTON>RWIT 6 M
2 /)
==
<IDENTIFIER> ®115" (/ <SUBSCRIPT LIST> *115"
@ ? <EXPRESSION> "115" , <EXPRESSION>
@ '(3*' <EXPRESSION> "1ll6" ) % ?



(3.2.2) 17

/)
15C

*COMMENT® 1.E.l.A.1.B.4. [IF THERE IS NO NEXT EXPRESSION,
THE VARIABLE IS LINEAR;

.SD'
<IDENTIFIER> "115% (/ <SUBSCRIPT LIST> "1l5"
@ ? <SUBSCRIPT EXPRESS ION>
@ *'(2* <EXPRESSION> "115" ) %
2 /)

]
"
v

SIDENTIFIERD "115™ v(/2¥ <LSUBSCRIPT LIST>: nplsw
@ ? <SUBSCRIPT EXPRESSION> @ <EXPRESSION> "115" % %
/)

1SC

*COMMENT' 1.E.l.A.1.B.5. IF THERE IS A NONLINEAR SUBSCRIP
EXPRESSION, MARK THE VARIABLE GENERAL;

ISDI
SIDENTIEIERD “115® {/ <SUBSCRIPT LEST>» "145"
@ ? <SUBSCRIPT EXPRESSION>
gL IC EXPRESSTRND " W1 ESYE - BF72
2 /)

"
n
v

<EOENTIFIER> ®115" (/1% <SUBSCRIPT LIST> “115*%
@ ? <SUBSCRIPT EXPRESSION> @ <EXPRESSION> "115" % ? %
/)

1500

*COMMENT® 1.E.1.A.1.B.6. MARK THE FIRST SUBSCRIPT
EXPRESSION FOR ANALYSIS;

sp
CIDENTIFIER> ®115% (/ <SUBSCRYIPY LIST> “Il5"
3 <SUBSCRIPT EXPRESSION> 3 <EXPRESSION> ™115" % ? %
/)

<IDENTIFIER> "115" (/ <SUBSCRIPT LIST> "115"
8 <SUBSCRIPT EXPRESSION>

@13 CEXPRESSIOND #1115 Jug P
z/)

'SC?

"COMMENT® 1.E.1.A.2. [IF THE SUBSCRIPTED VARTABLE IS CONSTANT,
MARK IT SO;

'*SD*
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<STATEMENT> "111"
@ ? <SUBSCRIPTED VARIABLE> "111"
2 <IDENTIFIER> "111" (/ ? % ?
2
—
<STATEMENT> *"111"
2 ? <SUBSCRIPTED VARIABLE> "111"
@ <TDENTTEIER> "RI1IP =V {/IVERET =2
%
L Sc'
% ; <COMPOUND TAIL> "11"
TEND®
SCE

VN -

YCOMMENT® 1.F.1. DFTECT AND OPTIMIZE SUBSCRIPTED VARIABLES WITH
LINEAR SUBSCRIPTS;

1Spe
<BLOCK HEAD> "11" ; <STATEMENT> "l1" ;3
'"BEGIN' <COMPOUND TAIL> "11" ; <STATEMENT> 12"
'*BEGIN' <COMPOUND TAIL> "12" ; <STATEMENT> "13"
SUABELY B 10 S EFCLAUSED S e
YBEGIN® <STATEMENTD> "l4"™
@ ? <SUBSCRIPTED VARTABLE> "11"
B CIDENTIETERD>SLIN: v /2 <SUBSCRIPT SIS TORN] N/ s
% ; <COMPOUND TAIL> "13"
YEND'

e o0

"
"
v

<BLOCK HEAD> "11" ; °'DEC' <SERIAL NUMBER> "]11" *INTEGER' ;
'DEC' <SERTAL NUMBER)> "12%" ¢INTEGER®' 3 LSTATEMENT> *"l11" ;
'BEGIN® <SERIAL NUMBER> "11%" *INTEGER' ..=
YREFY <IDENTIFIER> "11% 8(/]1*' <SUBSCRIPT LIST> ™l]uy/) s
<COMPOUND TAIL> "11" ; <STATEMENY> ®12» ;
'BEGIN®' <SERIAL NUMBER> "12" *INTEGER' ..=
YREF® <IDENTIFIER> "11" *(/1' <SUBSCRIPT LIST> "1l /)
— <SERTAL NUMBER> "11" *INTEGER' 3
<COMPOUND TAIL> "12"™ ; <STATEMENT> ™13 ;
<LABEL> "11" : <IF CLAUSE> wl1n
'BEGIN' <STATEMENT> "]4n
2

'COMMENT' 1.F.1.A.1. REPLACE ALL OCCURRENCES OF THIS
SUBSCRIPTED VARIABLE BY THE VALUE OF ITS REFERENCE;

15D
<STATEMENT> "]11]1"

B @ ? <PRIMARY> @ <SUBSCRIPTED VARIABLE> "11" % ? %
<STATEMENT> "]111"
@ 2 <PRIMARY> @ 'VAL' <SERTAL NUMBER> "11" *INTEGER' % ? %
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'SC

*COMMENT* 1.F.1.A.2. REPLACE SUBSCRIPTED VARIABLES ON THE
LEFT OF THE ASSIGNMENT SYMBOL. USE OF <PRIMARY> IS AN
ARTIFACT;

lSD.

CSTATEMENT> "111"

@ ? <SUBSCRIPTED VARIABLE> "11" := ? %
=

<STATEMENT> "111"

@ ? <PRIMARY> @ 'VAL' <SERIAL NUMBER> "11" 'INTEGER' % ..= ? %
'SC

'COMMENT' 1.F.l1.A.3. REPLACE EACH OCCURRENCE OF °'REF"*
SUBSCRIPTED VARIABLE BY ITS REFERENCE SERIAL NUMBER;

ISDQ
CSTATEMENY> “11)1™
@ ? <PRIMARY> @ 'REF' <SUBSCRIPTED VARIABLE> "11" % ? %

==)
<STATEMENT> "111"
@ ? <PRIMARY> 3@ <SERTAL NUMBER> "11" *INTEGER' % ? %
L. M
T3
<SERIAL NUMBER> "11" *INTEGER' ..=
<SERIAL NUMBER> ™11" 'INTEGER®
+ <SERIAL NUMBER> "12" *¢INTEGER®' ;3
<COMPOUND TAIL> "13"
TEND?
lscl
z
a

'COMMENT®' 1.G.1l. DETECT AND OPTIMIZE THE SUBSCRIPTED VARIABLES
WITH CONSTANT SUBSCRIPTS;

1Sp*
<BLOCK HEAD> "11%" 3 <STATEMENT> “11" ;
*BEGIN' <COMPOUND TAIL> "11" ; <STATEMENT> ™12" ;
<STATEMENT> "13" ; <STATEMENT> "14" §
€LABELY> *11™ = <IF CLAUSE> “11v
'BEGIN®' <STATEMENT> "15"
@ ? <SUBSCRIPTED VARIABLE> "11"
@ CIDENTIFIER> "11% (/3% CSUBSCRIPY LIST> "11" /) %3 ?
% 3 <COMPOUND TAIL> "12"
LEND?
==)
<BLOCK HEAD> "11" ; °*DEC' <SERIAL NUMBER> "11" *INTEGER' 3
<STATEMENT> *11" ;
'BEGIN' <SERIAL NUMBER> "11" °*INTEGER' ..=
YREF* <IDENTIFIER> "11% (/ <SUBSCRIPT LIST> "11" /) ;
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<COMPOUND TAIL> "11" 3 CSTATEMENT> "12" 3

CSTATEMENT> "13" ; <STATEMENT> i) Ko a5
ZUABEL> m11% 2’ <IF CLAUSE> M11%

'BEGIN' <STATEMENT> "15%

a

TCOMMENT® 1.G.1.A.1. REPLACE EACH DCCURRENCE OF THE
SUBSCRIPTED VARTABLE BY ITS REFERENCE;

lSD!
<STATEMENT> "111"
2 ? <PRIMARY> @ <SUBSCRIPTED VARIABLE> "11" % ? b4
==>
<STATEMENT> "111"
2 2 <PRIMARY> @ 'VAL' <SERIAL NUMBER> "11" *INTEGER®' % ? k4

ISCI

"COMMENT® 1.G.1.A.2. REPLACE SUBSCRIPTED VARIABLES ON
THE LEFT OF ASSIGNMENT SYMBOL. USE OF <PRIMARY>
[S AN ARTIFACT;

ISDI

<STATEMENT> "111"

@ ? <SUBSCRIPTED VARIABLE> "11" := ? 3
==>

<STATEMENT> "111"

A ? <PRIMARY> @ *'VAL' <SERTAL NUMBER> "11"™ *INTEGER' % ..= ? %
'SC'

YCOMMENT' 1.G.1.A.3. REPLACE EACH OCCURRENCE OF 'REF'
SUBSCRIPTED VARIABLE BY ITS REFERENCE TNTEGER;

'sp*

<STATEMENT> *"111"

@ ? <PRIMARY> 3@ *REF' <SUBSCRIPTED VARIABLE> "11" % ? %
==

SSTATEMENT> %] 1] %
pe @ ? <PRIMARY> @ <SERTAL NUMBER> "11" *INTEGER® % ? %

]
E

<COMPOUND TAIL> "12"
YEND'

NSy

b 4
*SC!

'COMMENT® 2. APPLY THE DEFINITION OF SECTION 4.6.4.2 OF THE REVISED
REPORT (SLIGHTLY MODIFIED) TO FOR-STEP-UNTIL STATEMENTS NOT
OPTIMIZED. HERE *FOR' "1" MATCHES EITHER *FOR' OR 'FOR1'.
FIRST TAKE CARE OF POSITIVE INTEGER STEPS;

lSDl
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SFORY Wiw CVARTABLE> %1% := <EXPRESSIOND> "1" *STEP?
CUNSIGNED INTEGER> "1" 'UNTIL' <EXPRESSION> "3® ¢pQ*
CSTATEMENT> %)%

[}
"
v

*BEGIN® °*DEC*®' <SERIAL NUMBER> "1™ f¢LABEL' ;
<VARIABLE> "1" := <EXPRESSION> ®w]n 3
<SERIAL NUMBER> ®]" "] ABEL"' :
YIF' <VARIABLE> "™1%" <= { CEXPRESSION> ™3m ) ¢THEN®
*BEGIN®' <STATEMENT> m1n 3
<VARIABLE> "1" := <VARIABLE> "1" + <UNSIGNED INTEGER> *"1" ;
*GO TO®' <SERIAL NUMBER> ™1™ 9"LABEL®
VEND?
'END*
'Scl

'COMMENT® 3., SAME FOR NEGATIVE INTEGER STEPS;

L SDI
SEORS n]w CVARIABLE> "IW 2= <EXPRESSION> ™19 SSTEPY
— <UNSIGNED INTEGER> *"1*" C*UNTIL' <EXPRESSION> "3" 'pQO"
CSTATEMENT> =]"n
==)
"BEGIN® °'DEC®' <SERIAL NUMBER> "1™ | ABEL®' ;
<VARIABLE> "1" := <EXPRESSION> "1" ;
<SERIAL NUMBER> "|" | ABEL"* :
ETF® CVARIABLE> P1® 3= ({ CEXPRESSTION> %30 ) *THEN?
*BEGIN® <STATEMENT> "1" ;
<VARIABLE> "1" := <VARIABLE> "1" — <UNSIGNED INTEGER> "1™ ;3
FCO.TD* CSER AL NUMBER> %1% ®LABEL®
YEND*
LEND*
1S5C

'COMMENT* 4. SAME FOR THE GENERAL STEP EXPRESSION;

.SDI
EFOR® 1w CVARIABLE> "1% 3= <EXPRESSION> %1% *STEP' <{EXPRESSIGN> w2m
TUNTIL®' <EXPRESSION> "3" *'DO°
KSTATEMENT> "19
==>»
SBEGIN® ‘DEC' <SERIAL NUMBER> W1W YL ABEL'’}
CYARIABLES ®]1% = JEXPRESSIDN> "1nm
<SERIAL NUMBER> ™1" *LABEL®' ¢
SR LSV ARTABLED P1® -~ [ <EXPRESSION> "3% ) )
* SIGN { <EXPRESSION> "2" ) <= 0
*THEN"
FBECIN® <STATEMENTY> "1™ 3
<VARIABLE> "1" := <VARIABLE> "1" + ( <EXPRESSION> ®2" ) ;
60 TD® <SERTAL-MUMBER> ™1n FLAREL?
YEND*
SEND"
lscl
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YCOMMENT® S. APPLY THE DEFINITION OF SECTION 4.6.4.3 ?F THE REVISED
REPORT (SLIGHTLY MODIFIED) TO FOR-WHILE STATEMENTS;

15D
'FOR® "1™ <CVARIABLE> "1" := <EXPRESSION> "1"

SWHILE®' <EXPRESSION> ™2" *DO'
<STATEMENT> =1

——
'BEGIN®' *DEC' <SERIAL NUMBER> "1" *LABEL® 3
<SERIAL NUMBER> "1" *LABEL®' :
<VARIABLE> "Im := <EXPRESSION> "1% 3
'"IF' <EXPRESSION> %2" *THEN'
'BEGIN' <STATEMENT> ®1" ;
*'GO TO' <SERIAL NUMBER> "1™ f*LABEL’
YEND"
*END"
TSCY
*COMMENT' 6. EXPAND THE ARITHMETIC EXPRESSION ACCORDING TO SECTION
40604013
. SD'
'FOR' "1" <VARIABLE> "1" := <EXPRESSION> "1" *D0' <STATEMENT> #]v
==
'BEGIN' <VARIABLE> "1" := <EXPRESSION> "1™ ;
<STATEMENT> =1"%
*END?
L] Sc L

'COMMENT® 7. EXPAND MULTIPLE FOR LIST ELEMENTS WHEN THE CONTROLLED
STATEMENT [S ALREADY A PROCEDURE;

15D
'FOR® ®1" <VARIABLE> "™1" := CFOR LIST> »nw
<FOR LIST ELEMENT> "1™ ¢p0O*' <PROCEDURE STATEMENT> m]®

==)
YBEGIN®
'FOR1® <VARIABLE> "1" := CFOR LIST> ®]m pQe
<PROCEDURE STATEMENT> ®]® ;
'FOR1' <VARIABLE> "1%" := <FOR LIST ELEMENT> ®1® *pQ¢
<PROCEDURE STATEMENT> "m1n
YEND*
L} SCe

'COMMENT® 8. EXPAND MULTIPLE FOR LIST ELEMENTS FOR OTHER STATEMENTS;

.SDI
'FOR! "1m CVARIABLE> "1" := <FOR LIST> "1® D

. <FOR LIST ELEMENT> n1m 1pQe <STATEMENT> 1"
==

'BEGIN® *DEC®' <SERIAL NUMBER> ®}w *PROCEDURE"* ;3



(3.2:2)

*SKIP* <SERIAL NUMBER> ™1" °*PROCEDURE’

*BEGIN®' °*DEC®' <SERIAL NUMBER> %“2" *'RESULT' ;
<STATEMENT> "1™

YEND* ;

SFRRIERCURRTABEED V] 3= <FDR LIST> wlw pQ*
<SERIAL NUMBER> ™1" 'PROCEDURE' ;

'FORL* <VARIABLE> "1" := <FOR LISY ELEMENT> ®"1® ¢DO*
<SERTIAL NUMBER> %1" 'PROCEDURE"

YEND®
E

YCOMMENT' 9. RESTRUCTURE LABELED FOR STATEMENTS;

.SDI
<LABEL> "1™ : <FOR STATEMENT> *"1n
e
CLABEL> "1% : *BEGIN' <FOR STATEMENT> "1% 3END*
ISC.
E
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4. Discussion and Conclusion

In this section I discuss some aspects of the intra-grammatical
transformation system considered in toto. These include certain
of the restrictions introduced in the consistency condition on IGTS
and their relation to the overall system. In addition, some extensions
fo the system are considered; these range from fairly simple to
rather fundamental, and indicate directions for further research.
Additional potential applications of IGTs beyond those given here
are also discussed; they, too, indicate areas for further investiga-
tion. Finally, some parallels between IGTs and natural language

transformational grammars are briefly outlined.

179



180

(43)

Gyl Comments on the Definition of Intra-Grammatical Transformations

Three aspects of the definition of IGTs require further brief
discussion; these are the intra-grammaticality restriction, the
restriction that the variable of an indefinite pattern occur uniquely
in the SDs of an IGT, and the difference between the sequencing
rules for transformations and subtransformations.

The restriction that the result of applying a transformation
to a parse tree be a parse tree of the same grammar as that of the
parse tree transformed has two important consequences: first, it
avoids the problem of specifying the tree structure for the trans-
formed parse tree and permits assignment of a tree structure to
the transformation itself; and second, it permits the tree structure
of indefinites to be derived from their match in the SD, thereby
avoiding the necessity of reparsing the transformed string after
each application of a transformation. Such reparsing would, of
course, considerably increase the computation required to apply
a transformation set sequence to a program.

In this context one should also note that the manner in which
the grammar used is extended to cover the constructions introduced
via transformations can greatly affect their elegance and simplicity.
For example, the transformations for identifier denotation would
be considerably more complex than those of section Sals aiE
<denotation>s had been introduced into the grammar by adding produc-

tions with <denotation> substituted” for <identifier> rather than
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making identifiers <identifier token>s and adding the single pro-

duction:

<identifier> ::= <identifier token> <denotation>

Also, in certain cases appropriate choice of left or right recur-
sive productions for certain constructions in the grammar can
simplify the transformations. Thus the Algol 60 productions for
<block head> and <compound tail> are particularly convenient in
the transformations which move information from the array, switch,
and procedure declarations of a block into its <compound tail>.

The preparation of the formal definition of IGTs given in
section 2 uncovered certain anomalies in the implementation of IGTs.
One of these was the restriction that the occurrence of the
variable of an indexed indefinite pattern be unique in the SDs
of an IGT. This restriction is necessary %o insure that an
occurrence of that variable in an indefinite pattern in the SC
denotes an element of the environment having a unique indefinite
skeleton. The formal definition shows that a variable can actually
stand for two different things: the identity of a particular parse
tree, or the indefinite skeleton associated with a particular
match of that parse tree. It might, therefore, be appropriate to
have separate indices for parse trees and indefinite skeletons,
but how to do so while retaining the simplicity of the present nota-
tion is a difficult problem. Permitting indices on free symbols

might be one solution (as was in fact done in an early version
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of IGTs), but doing so suggests that the free symbols can be

rearranged, which, of course, they cannot without destroying the

tree structure they represent.

The differences in the sequencing rules for transformations
and subtransformations, specifically the fact that a transformation
set is reapplied throughout a transformed parse tree whereas the
subtransformation lists of a subtransformation sequence are applied
only at the top of the transformed subtree produced from their
associated pattern tree, may seem at first to be another ad hoc
consequence of the implementation of IGTs. The present rules cer-—
tainly work well, however, and may be at least partially justified
by the difference in scope rules for transformations and subtransfor-
mations; that is, since subtransformations have access to 'global"
variables not in their own SD, it may be reasonable to restrict
them from indiscriminate application throughout the transformed

subtree.
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4.2 Possible Extensions to Intra-Grammatical Transformations

Several directions for extension of IGTs are possible. One
simple and useful notational extension would be to introduce Markov
terminal transformations in addition to the present simple trans-
formations (cf. [29], cha. 5). A terminal transformation, if it
applies, specifies that the application of the transformation list
in which it appears is to be unconditionally terminated after applying
it. Such transformations would be especially useful where it is
presently necessary to place a marker or otherwise artifically change
the transformed parse tree to terminate application of a transforma-
tion list (cf, for example, the introduction of the marker '(/1'
in transformation 1 of the <array segment>-transformation list of
section 3.1.2). For similar reasons, nonterminal markers (synonyms
for nonterminal symbols) might be useful in addition to the presently
available terminal markers. s

Two other essentially notational extensions, somewhat more
complex than the above, are the introduction of logical combinations
of conditions for matching in the SD (including conjunction, disjunc-
tion, and negation of pattern trees at a particular node), and the
introduction of a (parameterless) procedure mechanism for labeling
groups of transformations. The former would be useful for combining
certain transformations which have almost identical structure but
now must be written separately (for example the 1.E.1.A.1.B.1.A sub-

transformation list of section 3.2.2). The latter extension would
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be useful where the same subtransformation list or sequence appears

in more than one transformationm, but it would greatly complicate

the scope rules for subtransformations.

In considering the above extensions one should keep in mind
that, in view of the result of section 2.4, they would only increase
the convenience of using IGTs, not their descriptive power. Thus
their introduction must be weighed carefully against the notational
problems it would cause, lest whatever elegance and convenience
the present formulation possesses be sacrificed for no real gain.

Several aspects of the definition of IGTs are deserving of
further experimental or theoretical investigation. Experimentation
with variations of the sequencing rules employed here would be inter-
esting. For example, instead of alternating the reapplication of
the transformation set with the application of subtransformation
sequences in the SC, all of the subtransformation sequences might
be applied at their respective nodes and then the entire transformed
parse tree rescanned (cf. 2.3.2(3) Trset Recursive Result) to reapply
the transformation set. As there are no obvious theoretical criteria
for selecting one or the other of these sequencing methods, experi-
mentation could be used to verify which is more elegant or efficient.

Areas for theoretical investigation include attempting to derive
conditions which guarantee termination of the application of a
transformation list, and conditions which guarantee that the program
after transformation is semantically, equivalent to the program before

transformation. Iturriaga [20] has made some progress toward solving
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the former problem, but the presence of indefinites in IGTs compli-
cates it considerably.
Lastly, it would be interesting to investigate the problem
of adapting transformations to transform the abstract syntax of
a program (in the sense of the Vienna Report) rather than its concrete

syntax, as is done here.
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4.3 Other Applications of Intra-Grammatical Transformations

A number of applications of transformations in addition to

those discussed in section 3 seem worthy of investigation. One

of these, a problem currently of interest at Argonne National Lab-

oratory [12], is that of automatically or semiautomatically converting

an existing program to use multiple-precision arithmetic. Involved

would be conversion of all arithmetic operations into calls on subrou-
tines or functions in a multiple-precision arithmetic package, and
introduction of the appropriate array declarations for the multiple-
precision variables. Assuming a suitable grammar for the language
used, this problem should be quite amenable to transformational
solution.

There is also widespread gemeral interest in designing languages
which can be extended by the programmer. One approach to this problem
is to introduce a macro facility into higher-level programming lang-
uages. Macro expansion should be a natural application for transforma-
tions (and indeed first motivated this investigation of them), assuming
the problem of conveniently extending the context free grammar of
the language can be solved.

Finally, the application of transformations to other programming
language definitional problems could be investigated. One of these
is the description of the syntax of DO-loops in Fortran; it would

be interesting to compare a transformational description with the

rather inelegant extended-BNF description of Rabinowitz [32]. Two
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other definitional problems potentially amenable to transformational
solution are the context condition and the extensions of Algol

68 [36]. These problems are somewhat similar to the identifier
denotation and for statement optimization problems of Algol 60.

Some modifications might have to be made to IGTs in order to work

with the infinite grammar of Algol 68.
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4.4  Conclusion

This work was begun with the intent of showing that Chomsky's
concept of transformational grammar could be adapted and implemented
for use with programming languages, and that transformational grammars
so adapted are useful for solving certain programming language
definitional problems. I believe that all three of these goals
have been achieved, although much further work could be done. There
remain three related observations on the philosophical implications
of this work.

The first concerns a hypothesis of J. C. Reynolds [33], somewhat
analogous to the '"deep structure hypothesis' of Chomsky [10], con-
cerning programming languages, viz: When a programmer writes a
program, he actually conceives of a completely unambiguous tree-
like structure (in which there are no duplicated identifier names,
all identifiers are directly associated with their types, etc.),
which he then transcribes into a linear string in some programming
language.

The role of the syntactic parts of the programming language
definition (including the production rules, identifier scope rules,
and "abbreviations" such as for statements) is thus to provide the
pProgrammer a maximum of convenience in making that transcription
by relieving him of having to concern himself unnecessarily with

details such as duplication of identifier names and the construction

of loops.
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The ability to give a purely grammatical description of identifier
denotation and the semantics of for statements, which may be regarded
as helping to restore the linear string to the tree-like structure
conceived by the programmer, thus lends support to this hypothesis.

These examples also support an observation by Chomsky [10] (also
related to the deep structure hypothesis) that nearly all transforma-
tions proposed for use in natural language grammars have the property
that the semantics of a sentence is invariant under transformation.
He suggests that such invariance may be a linguistic universal,

i.e., a property of all correct transformational grammars for all
natural languages.

Even if the transformations in the examples of section 3 are
regarded as defining identifier denotation and the semantics of
for statements, these definitions must concur with our previous
understanding of those concepts. Thus th{s work lends even further
weight to the semantic invariance hypothesis.

Finally, the intra-grammatical transformation system suggests
the hypothesis that bottom-up application of transformation sets
is a linguistic universal. Such an application rule is suggested
by Chomsky in [10] for natural languages, and by Grau, Hill, and
Langmaak in [15] for the optimization of multiple for statements.

And it is certainly supported by the examples of section 3, especially

the identifier denotation transformation set.
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6.1 Grammar for Transformational Examples

Listed below is the modified Algol 60 grammar (and the synonyms
for terminal symbols) used for the transformations and examples of
sections 3, 6.2, and 6.3. The modifications to the Algol 60 grammar
consist primarily in making <identifier> (actually <identifier token>),
<unsigned integer>, <logical value>, <adding operator>, <multiplying
operator>, <relational operator>, and <dummy statement> terminal
symbols, and removing certain inconsistencies associated with <number>,
<string>, <expression> (the distinction between arithmetic, Boolean,
and designational expressions, which can only be made on the basis of
type information for variables, is dropped), <identifier>, <function
designator> (a function designator with no parameters is called a
<variable>), <switch designator>, and <procedure designator>. In
addition systematic changes were made to <procedure heading> to
eliminate occurrences of the symbol <empty>. Finally, <unsigned

integer> as a <label> is not allowed.
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<INTEGER> ::= <UNSIGNED INTEGER>

<INTEGER> ::= <ADDING OPERATOR> <UNSIGNED INTEGER>
<DECIMAL FRACTION> ::= ., <UNSIGNED INTEGER>

CEXPONENT PART> ::= * CINTFGER>

<DECIMAL NUMBER> : CUNSIGNED INTEGER>

<DECIMAL NUMBER> : <DECTMAL FRACTION>

<DECIMAL NUMBER> : CUNSIGNED INTEGER> <DECIMAL FRACTION>
<UNSIGNED NUMBER> <DECIMAL NUMBER>

<UNSIGNED NUMBER> <EXPONENT PART>

<UNSIGNED NUMBER> <DECIMAL NUMBER> <EXPONENT PART>
<STRING> z:= *(*
<STRING> z2:= ¢0¢ 01

<IDENTIFIER> ::= <IDENTIFIER TOKEN>

<IDENTIFIER> ::= <DENOTATION>

<SIMPLE VARIABLE> ::= <IDENTIFIER>

<SUBSCRIPT EXPRESSION> ::= <EXPRESSION>

<SUBSCRIPT LIST> ::= <SUBSCRIPT EXPRESSION>

<SUBSCRIPT LIST> ::= <SUBSCRIPT LIST> , <SUBSCRIPT EXPRESSION>
<SUBSCRIPTED VARTABLE> ::= <IDENTIFIER> ( <SUBSCRIPT LIST> )
<VARIABLE> ::= <SIMPLE VARIABLE>

~ bt ss s 00 s s ||
Honn
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<VARIABLE> ::= <SUBSCRIPTED VARIABLE>
<PRIMARY> ::= <UNSIGNED NUMBER>
<PRIMARY> ::= <VARIABLE>

<PRIMARY> ::= <PROCEDURE DESIGNATOR>
<PRIMARY> ::= ( <EXPRESSION> )
<PRIMARY> ::= *VAL"' <VARIABLE>
<PRIMARY> ::= 'REF' <VARIABLE>

<FACTOR> ::= <PRIMARY>

<FACTOR> ::= <FACTOR> 'POWER®' <PRIMARY>
<TERM> ::= <FACTOR>

<TEPM> ::= <TERM> <MULTIPLYING OPFRATOR> <FACTORD>

<ARITHMETIC FXPRESSION> ::= <TERM>
CARTITHMETIC EXPRESSION> ::= <ADDING QPERATOR> <TERM>
<ARITHMETIC EXPRESSION> ::= <ARTTHMETIC EXPRESSION>
<ADDING CPERATOR> <TERM>
<RELATION> ::= <ARITHMETIC EXPRESSION> <RELATIONAL OPERATOR>
<ARITHMETIC EXPRESSION>
<BOOLEAN PRIMARY> ::= <LOGICAL VALUE>
<BOOLEAN PRIMARY> ::= <RELATION>
<BOOLEAN PRIMARY> ::= <ARITHMETIC EXPRESSION>
<BOOLEAN SECONDARY> ::= <BOOLEAN PRIMARY>
<BOOLEAN SECONDARY> ::= -~ <BOOLEAN PRIMARYD>

<BOOLEAN SECONDARY>
<

>
>
<BOOLEAN FACTOR> ::

<BOOLEAN FACTOR> = <BOOLEAN FACTOR> & <BOOLFAN SECONDARY>
<BOOLEAN TERM> ::= <BOOLEAN FACTOR>

<BOOLEAN TERM> ::= <BOOLFAN TERM> | <BOOLEAN FACTOR>
<IMPLICATION> ::= <BOOLEAN TERM>

<IMPLICATION> ::= <IMPLICATION> *IMPLIES* <BOOLEAN TERM>
<SIMPLE BOOLEAN> ::= <IMPLICATION>

<SIMPLE BOOLEAN> ::= <SIMPLE BOOLEAN> *FQUIV' <IMPLICATION>
<EXP IF CLAUSE> ::= <IF CLAUSE>
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CEXPRESSION> ::= <SIMPLE BOOLEAND
CCXPRESSION> ::= <EXP IF CLAUSE> <SIMPLE BOOLEAN>
TELSE' <EXPRESSION>
CLABELY> ::= CIDENTIFIERD>
CUNLABELLED BASIC STATEMENTD>
CUNLABELLED RASIC STATEMENT>
CUNLABELLED BASIC STATEMENT>
CUNLABELLED BASIC STATEMENT>
CUNLARELLED BASIC STATEMENT>
CUNLABFLLED BASIC STATEMENT> <SKIP STATEMENTY>
CBASIC STATEMENT> ::= <UNLABFL D BASIC STATEMENT>
CBASIC STATEMENT> ::= <LABEL> : <BASIC STATEMENT>
CUNCONDITIONAL STATEMENT> ::= <BASIC STATEMENT>
CUNCONDITIONAL STATEMENT> <COMPOUND STATEMENT>
CUNCONDITIONAL STATEMENT> :2:= <BLOCK>

= <ASSIGNMENT STATEMENT>
= <GO TO STATEMENT>

= <DUMMY STATEMENT>

= <PROCEDURE STATEMENT>
= CRETURN STATEMENT>
E

O™ 00 e e we se e

CSTATEMENT> ::= <UNCONDITIONAL STATEMENT>
<STATEMENT> ::= <CONDITIONAL STATEMENT>
CSTATEMENT> ::= <FOR STATEMENT>

CCOMPNUND TAIL> ::= <STATEMENT> 'END'

CCOMPOUND TAIL> ::= <STATEMENTD> 3 <COMPOUND TAIL>
<BLOCK HEAD> ::= 'BEGIN' <DECLARATION>

CRLOCK HEAD> ::= <BLOCK HEAD> ; <DECLARATION>
CUNLABELLED COMPOUND> ::= 'BEGIN' <COMPOUND TAIL>
CUNLABELLED BLOCK> ::= <BLOCK HEAD> ; <COMPOUND TAIL>
<COMPOUND STATEMENT> ::= <UNLABELLED COMPOUND>
¢COMPOUND STATEMENT> ::= <LABEL> : <COMPOUND STATEMENT>
<BLOCK> ::= <UNLABELLED BLOCK>

<BLOCK> ::= <LABEL> : <BLOCK>

<PROGRAM> ::= <BLOCK>

<PROGRAM> <COMPOUND STATEMENT>

<PROGRAM> ::= 'COMMENT'

CLEFT PART> ::= <VARIABLE> :=

<LEFT PART LIST> :=:= <LEFT PART>

KLEFT PART LIST> :3= <LEFT PART LIST> <KLEFT PART>
CASSIGNMENT STATEMENT> ::= CLEFT PART LIST> <EXPRESSION>

<GO TO STATEMENT> = 'GOT0"' <EXPRESSION>
<DUMMY STATEMENT> ::= <EMPTY>
CIESCEAUSED ti= VIE® <EXPRESSION»:TRHENS
<IF STATEMENT> ::= <IF CLAUSE> <UNCONDITIONAL STATEMENT>
<CONDITIONAL STATEMENT> ::= <IF STATEMENTD>
<CONDITIONAL STATEMENT> ::= <IF STATEMENT> ‘'E <
<CONDITIONAL STATEMENT> ::= <IF CLAUSE> <FOR ;?5TEM:L¢;EMENT)
<CONDITIONAL STATEMENT> ::= <LABEL> : <CONDITIONAL STATEMENT>
zzg: tlgT ELEMENT> ::= <EXPRESSION>
IST ELEMENT> ::= <EXPRESSION> * .

St 'UNTIL® <EXPRESSION> S e L

LIST ELEMENT> ::= <EXPRESSIOND> ¢ g
<FOR LIST> ::= <FOR LIST ELEMENT> e, T
<FOR LIST> ::= <FOR LIST> , <FOR LIST ELEMENT>
<FOR CLAUSE> ::= 'FOR' <VARIABLE> := <FOR LIST> *DO'
<FOR STATEMENT> ::= <FOR CLAUSE> <STATEMENT>
<FOR STATEMENT> ::= <LABEL> : <FOR STATEMENT>
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<PARAMETER DELIMITER> ::= ,
<PARAMETER DEL IMITER> ::= ) <IDENTIFIER> : (
<ACTUAL PARAMETER> ::= <STRINGD>
<ACTUAL PARAMETER> ::= <EXPRESSION>
<ACTUAL PARAMETER LIST> ::= <ACTUAL PARAMETER>
<ACTUAL PARAMETER LIST> ::= <ACTUAL PARAMETER LIST>

<PARAMETER DELIMITER> <ACTUAL PARAMETER>
<IDENTIFIER 1> ::= <IDENTIFIER>
<PROCEDURE DESIGNATOR> ::= <IDENTIFIER 1>

( <ACTUAL PARAMETER LIST> )
<PROCEDURE STATEMENT> ::= <PROCEDURE DESIGNATOR>
<PROCEDURE STATEMENT> ::= <IDENTIFIFR 1>
<RETURN STATEMENT> ::= *RETURN' <EXPRESSION>
<SKIP STATEHENT) 1:= 'SKIP' <IDENTIFIER> <BLOCK>

<DECLARATION> ::= <TYPE DECLARATION>
<DECLARATION> : <ARRAY DECLARATION>
<DECLARATION> = <SWITCH DECLARATION>
<DECLARATION> : <PROCEDURE DECLARATION>
<DECLARATION> : <LABEL DECLARATION>
<DECLARATION> ::= <RESULT DECLARATION>
<DECLARATION> z=2:= *DEC* <DENOTATION>

<TYPE LIST> :3= <SIMPLE VARIABLE>

<TYPE LIST> ::= <SIMPLFE VARIABLE> , <TYPE LIST>

<TYPE> ::= °'REAL"

<TYPE> = YINTEGER?

<TYPE> ::= "BOOLEAN?'

<LOCAL OR OWN TYPE> ::= <KTYPED>

<LOCAL OR OWN TYPE> ::= 'OWN' <TYPE>

<TYPE DECLARATION> ::= <LOCAL OR OWN TYPE> <TYPE LIST>

<LOWER BOUND> ::= <EXPRESSION>

<UPPER BOUND> ::= <EXPRESSION>

<BOUND PAIR HEAD> ::= <LOWER BOUND> :

<BOUND PAIR> ::= <BOUND PAIR HEAD> <UPPER BOUND>

<BOUND PATIR LIST> ::= <BOUND PAIR>

<BOUND PAIR LIST> ::= <BOUND PAIR LIST> , <BOUND PAIRD>

<ARRAY SEGMENT> ::= <IDENTIFIER> (/ <BOUND PAIR LIST> /)

<ARRAY SEGMENT> ::= <IDENTIFIER> , <ARRAY SEGMENT>

<ARRAY LIST> ::= <ARRAY SFGMENT>

<ARRAY LIST> ::= <ARRAY LIST> , <ARRAY SEGMENT>

<ARRAY DECLARATIOND> ::= 'ARRAY' <ARRAY LIST>

<ARRAY DECLARATION> ::= <LNCAL OR OWN TYPE> 'ARRAY' <ARRAY LIST>

<SWITCH LIST> ::= <EXPRESSION>

<SWITCH LIST> ::= <SWITCH LIST> , <EXPRESSION>

<SWITCH DECLARATION> ::= 'SWITCH®' <IDENTIFIER> := <SWITCH LIST>

<FORMAL PARAMETER> ::= <IDENTIFIER>

<FORMAL PARAMETER LIST> ::= <FORMAL PARAMETERD>

<FORMAL PARAMETER LIST> ::= <FORMAL PARAMETER LIST>
<PARAMETER DELIMITER> <FORMAL PARAMETER>

<FORMAL PARAMETER PART> ::= ( <FORMAL PARAMETER LIST> )

<IDENTIFIER LIST> ::= <IDENTIFIER>

<IDENTIFIER LIST> ::= <IDENTIFIER LIST> , <IDENTIFIER>

<VALUE PART> ::= 'VALUE' <IDENTIFIER LIST> 3

a9
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'"PROCEDURE?

SSPECTEIERD>
<TYPE> 'PROCFEDURE'

<SPECTFIERD>
<SPECIFICATION PART> : <SPECIFIER> <IDENTIFIFR LIST> 3

<SPECIFICATION PART> ::= <SPECIFICATION PART> <SPECIFIER>
<IDENTIFIER LIST> 3

200
<SPECIFIER> ::= 'STRING'
<SPECIFIER> ::= <LTYPE>
<SPECIFIER> ::= 'ARRAY'
CSPECIFIER> ::= <TYPE> 'ARRAY'
<SPECIFIER> ::= 'LABEL®*
CSPECIFIER> 2:= 'SWITCH'

= KIDENTIFIER> 3
= <IDENTIFIER> <FORMAL PARAMETER PART>
= <IDENTIFIER> <FORMAL PARAMETER PART>

<PROCEDURE HEADING> :
<PROCEDURE HEADING> :
<PROCEDURE HEADING> :

<SPECIFICATION PART>
<PROCEDURE HEADING> ::= <IDENTIFIER> <FORMAL PARAMETER PART>

<VALUE PART> <SPECIFICATION PART>
<PROCEDURE BODY> ::= <KSTATEMENT>
<PROCEDURE DECLARATION> ::= *PROCEDURE®' <PROCEDURE HEADING>
<PROCEDURE BODY>
<PROCEDURE DECLARATION> ::= <TYPE> 'PROCEDURE'
<PROCEDURE HEADING> <PROCEDURE BODY>
<LABEL DECLARATION> ::= *LABEL' <IDENTIFIER>
<RESULT DECLARATION> ::= *RESULT' <IDENTIFIER>
CRESULT DECLARATION> ::= <TYPE> *RESULT' <IDENTIFIERD>
<SERTAL NUMBER> ::= # <UNSIGNED INTEGERD>

<TYPE INDICATOR> ::= <SPECIFIER>

<TYPE INDICATOR> ::= 'FORMAL'

<TYPE INDICATOR> ::= <TYPE> 'RESULT?

<TYPE INDICATOR> ::= 'RESULT!

<DENOTATION> ::= <SERIAL NUMBER> <TYPE INDICATOR>

- e



TERMINAL SYMBOL

<LOGICAL VALUE>
<ADDING OPERATOR>
<MULTIPLYING OPERATOR>
" POWER?

<RELATIONAL OPERATOR>

IMPLIES®

~a 4s 4 @ =M )

-~
~

'FOR?

'BEGIN®

*PROCEDURE"*
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SYNONYMS

CTRUE" 'FALSE'

+ -

% /A {f s/

* %k

= < X <= >= -=
> =<

"EQ"  LS'  'GR'  'LQ’
*NQ'  'EQUAL®  'LESS'
"GREATER'  'NOT GREATER®
*NOT LESS'  *NOT EQUAL®
*NOT

*AND"

'OR'

vIMPIY

o $

:(l' (2 v (4
.(5' 1(6"

LT B (G20 V(73
vi/s" YA '"/6"

YEOR 1 YFOR2Y 'FOR3!
*FOR4* *FORS!

'BEGINL® *BEGIN2*
*BEGIN3* *BEGIN4*

*PROC?

1GQ°
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6.2 Identifier Denotation Examples

In this section are given two examples of the application of
the transformation set sequence consisting of the identifier denotation
transformation set described in section 3.1.

The first of these examples is a program which demonstrates
the application of the various transformations and transformation
lists in the transformation set. The action of the <procedure
declaration>-transformation list and the appropriate transformations
of the <block>-transformation list is illustrated by the denotation
of the procedures int proc and properproc and their calls. The
former is example 3.1.1 (2), but note that when transformed by the
complete transformation set, the procedure body is converted into
a skip statement. {(Note also the denotation of the value parameters
valreal and valarray.) The procedure properproc illustrates
the denotation of a label internal to a procedure body which is
not a block, while the for statement illustrates the denotation
of a label (forinternal) internal to its controlled statement. The
remaining declarations illustrate the operation of the other elements
of the <block>-transformation list, together with the transformations
which convert declarations to single form, and which produce calls
to allocate from the information in array and switch declaratioms.
Note that the construction at proglabell is example 3.1.1 (1).

The first example program, first in its original form, then

after transformation is:



*BEGIN®

" INTEGER' "PROCEDURE' INTPROC ( VALREAL , VALARRAY , FORMAL ) 3

*VALUE' VALREAL , VALARRAY ;

*REAL' VALREAL ;

*ARRAY' VALARRAY ;

INTPROC == 'IF' FCRMAL <= 0 'THEN'

1 "CELSE®

ENTIER ( VALREAL + VALARRAY (/ 1 /) * FORMAL

' PROCEDURE® PROPERPRCC ( FORMAL , LABEL ) 3

*BEGIN®
PRCCINTERNAL : FORMAL := FORMAL - 1 3
*GOTO* *IF' FORMAL <= C °'THEN'
PROCINTERNAL *ELSE"
LABEL

*END' 3

TREAL' A 3

*INTEGER* C 4 N » M , K 3

YARRAY' B , D (/7 1 2 2 /) 3

'SWITCK' S := PROGLABEL1 , PROGLABEL2 3

‘FCR* C =1 , 2 DO’
INTERNAL ¢ B (/7 C /) := 3 . 14159 / C 3

) + INTPROC ( VALREAL

VALARRAY

s FORMAL -

1

(2°9)
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C 2= INTPRCC ( B (/ 2 /) 4+ B 4, C ) ;
PRCGLABEL1 : 'BEGIN®
*ARRAY' A (/ 1 = N ,
A/ 14+ 1,4, 07/) :=
UEND LSS
PRIGEERPROC (S CRGESSE 072/ )8 ") ss
PROGLABEL2 :
"END*

SEMSy = 2R KO 2 K/ s

%02
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*BEGIN'
*DECH
"QEC™
SDECH
SDECY
TUEL®
*DECY
*DEC®
SDEC®
SQECY
SHECY
*DEC"
*DEC*

ALLOCATE ( # 00000931
# 00000930
"DEC' # 00000914
*DEC* # 00000915
'DEC* # 00000916
'DEC*' # 00000917

'*SKIP?*

R O W E E O E T O™ E

#

CC000929 ' INTEGER"
00000930 °*PROCEDURE"?
C0000920 *REAL"' ;

C0000921 "INTEGER'
00000922 *INTEGER?®
C0000923 *INTEGER®
00000924 *INTEGER®

00000925 *REAL*
CC000926 *REAL'

C0000931 *SWITCH®
00000927 *'LABEL" ;
C00C0928 'LABEL' ;

*BEGIN®

# 00000915
'GOTO' *IF*
# 00000915

"LABEL"

*PROCEDURE?

*ARRAY!' ;
YARRAY' ;

'BEGIN'

»
’

# 000CO0S16

# 00000916 *FCRMAL'
SEIESES

"LABEL"'

’

'SWITCH* , # 00000927
*PROCEDURE*
VRES UL
SCABEL"
*FORMAL
'FORMAL?"

"LABEL
'FORMAL' :=
<= 0 'THEN!

+ # 00000928

# 00000916

'FORMAL *

YLABEL"*

1
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# 00000917 °FCRMAL'

*END"*
YENDY 3§
*SKIP' # 00000929 *INTEGER® *PROCEDURE® *BEGIN®

YDEC' # 00000908 'INTEGER® °*RESULT' ;

*DEC®' # 00000909 'REAL"' 'ARRAY' ;

*DEC* # 00000910 °*REAL"' ;
*DEC' # 00000911 °*FORMAL' ;
*DEC* # 00000912 'FORMAL® ;
"DEC' # 00000913 'FORMAL®' ;
# 00000910 'REAL' := # 00000911 °*FORMAL' ;
ALLOCATE ( # 00000909 'REAL' 'ARRAY' , # 00000912 ‘'FORMAL' ) ;
# 00000908 'INTEGER® *RESULT® := *'IF' # 00000913 'FORMAL' <= 0 °'THEN'

JRLEIRSE S
ENTIER ( # 00000910 *REAL® + # 00000909 'REAL' *ARRAY' (/ 1 /) * # 00000913 'FORMAL® )
gggggQZQI'ENTEGER' *PROCEDURE' ( # 00000910 'REAL* , # 00000909 *REAL' *ARRAY' , # 00000913
= ;
'RETURN' # 00000908 *INTEGER® *RESULT'

SEND Y
ALLOCATE ( # 00000926 'REAL' 'ARRAY' , 1 4 2 ) 3
ALLOCATE ( # 00000925 'REAL' 'ARRAY' , 1 , 2 ) 3

# 00000922 'INTEGER® := # 00000923 'INTEGER® := # 00000924 °'INTEGER' := 10 ;3
'FOR' # C0000921 'INTEGER' :=1 , 2 'DC'
*BEGIN'

'DEC' # 00000918 *LABEL' 3

902
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# C000091

/ # 00000921 'INT
YEND'

# 00000921 'INTEGER®' := 3

#

H
# 00000921 °*INTEGER' := 000009
+ ¥ 00000925 *REAL' *ARRAY' , # 000

# 00000927 °*LABEL®' : ‘'BEGIN'
*DEC' # 00000919 *REAL' 'ARRAY' ;

ALLOCATE ( # 00000919 °*REAL' 'ARRAY' , 1 #
s — 2 * # 00000924 'INTEGER®* , 2 * # 00000924 '!NYE

# 00000919 "REAL' *ARRAY' (/ 1 , 1 4 0 /)
SENDT 3

2 TLABEL' : # 00000925 'REAL® 'ARRAY' (/ # 00000921 °'INTEGER' /) := 3

« 14159
GER*

'PR?CEDURE' { # 00000925 "REAL' 'ARRAY' (/ 2 /)

890?922 *INTEGER' 5, 1 o, # 00000923 'INTEGER'
’

68

=1
# COCOC930 'PROCEDURE' ( # 00000921 *INTEGER®' , # 00000931 *'SWITCH' /7 27)) ;s
# 00000928 'LABEL®' :

*ENC*

(2*9)
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The second example program is designed to illustrate the imple-
mentation of the Algol 60 identifier scope rules. It consists of
roughly the same pair of statements, an assignment statement and
a go to statement, repeated in various blocks. Some of these blocks
are contained in others, and some are parallel to others; all contain
redeclarations of some of the identifiers appearing in the pair
of statements, thus illustrating the various static scopes for
variables and labels. Note that one identifier, Z in the assignment
statement between the third and fourth blocks, is used outside the
scope of any of its declarations, and hence appears undenoted in
the transformed program.

The scope rule demonstration program, first in its original

form, and then after transformation, is:



*BEGIN®
*REAL' A 3
*INTEGER®* B 3
*BCCLEAN' C 3
TARRAY* D (/1 = 2 /) 3
*INTEGER® *ARRAY' E (/1 = 2 /) 3
Livst At =t R (YTFY € 'TEEN?
De L ¥ ¢l YELSE"
E-tfF 27) )5
EEEY YEFALSEY 'THEN'
*GOTO" L1 3
*BEGIN®
'REAL' A 3
*INTEGER" B 3
Az=E8 &t YIF? C YTHEN!
P {4 1 /) 'ELSE!
BT T
SIF' 'FALSE' '"THEN!
'GCTO® L1 ;
'BECIN®
'REAL' A ;
" BOOLEAN®' C 3
'REAL' Z ;

(z°9)
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L1 = Z 2= A =B + ( "IF' C °*THEN?®
DS/ =7 Y S E TS EY
ES /255
ST E VSN EATSS E U E N
'GOTO* L1
*END*' 3
Ll 2 Z == A := B + ( *'[F' C "THEN?'
D78 10/ ) SR EES F 1
EN{T/ 20/8) Vo
[ E A STESRUTHE N
*GCTO* L1 3

'BECGIN'
'REAL' A ;
YARRAY' D (/ 1 = 2 /) 3
SREALISIZ25
ZEs=RARS =R BE £ (S TR G THENY

0 (/1 /) "ELSE"
ERC/25/) ) 5
TRV EALSS ES T HENI
'GOTO"* L1
YEND'
*END* ;
A =8+ ( "IF' C "THEN?!
B/ L) VEINSE!

012
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YIF' 'YFALSE' 'THEN®
*GCTO' L1

*END?

T1C
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*BEGIN'

*CEC' # 00000902 °*REAL' ;

*DEC* # CCCCO0903 °'INTEGER' ;

*DEC* # 00000904 *'BOOLEAN' 3

*DEC*' # 00C00905 °*REAL' 'ARRAY' ;

'DEC' # 00000906 'INTEGER' ®ARRAY' ;

*DEC' # 00CCO907 'LABEL' ;

ALLCCATE ( # 00000906 'INTEGER® 'ARRAY' , 1 , 2 ) 3
ALLOCATE ( # 00000905 *REAL' "ARRAY' , 1 , 2 ) 3

*THEN

# 00000905 °'REAL' 'ARRAY' (/ 1 /) 'ELSE'

# C000C906 'INTEGER' 'ARRAY' (/ 2 /) ) 3

UL ESUEALSE LR UTHENY

*GCTO' # 00000907 'LABEL"' ;

*BEGIN'
'DEC' # 00000899 'REAL' ;
*CEC* # 00000900 'INTEGER' 3
*DEC' # 00000901 'LABEL' ;
# C0000899 'REAL' := # 00000900 *'INTEGER®' + ( '[F' # 00000904 ‘'RBOOLEAN®
# 00000905 'REAL' *ARRAY' (/ 1 /) 'ELSE®
# 00000906 *INTEGER®' 'ARRAY' (/ 2 /) ) ;
BIEESVEATSEVECTHENY
*GCTO* # 00000901 'LABEL® ;

# 90000907 SLABEL' : # 00000902 °*REAL' := # 00000903 ‘*INTEGER® + ( 'IF' # 00000904 'BOOLEAN®

YTHEN®

[AY4
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;.

*BOOLEAN?®

*BOOLEAN'

CIF' #

*BEGIN'
YRECY
SGEC*

# 00000892
# 00000893
'DEC* # 00000894 °*REAL' ;
*DEC' # 00000895 ‘'LADEL" ;

# 00000895 °*LABEL"' : #
00000893 'BCOLEAN' °*THEN

# 00000905 *REAL' T'ARRAY'

# 00000906 *INTEGER®

*IF' 'FALSE®' *THEN®

*GOTO' # 00000895 *LABEL'
SEND® 3

# 00000901
*THEN?

# COCO00905 'REAL' 'ARRAY' (/ 1 /) *ELSE*

# COCCO0S06 'INTEGER' 'ARRAY! (/727 ;

SIFY S EALSEY SUTHENY

*GOTO* # 0000C9C1 'LABEL' ;

*BEGIN'
*DEC* # 000008S6
*DEC* # 00000898
*DEC' # 00000897
ALLOCATE |

# C0000897
STHEN®

EREALY 3
*BOCLEAN" ;

{20 ¥ 4
"ARRAY?"

‘LABEL' : Z := # 00000899

EREALY 5
*REAL' °*ARRAY!' ;
YREALY -3

# 000CC898 'REAL' 'ARRAY!®
'REAL' := # 00000896

)

'REAL'

*REAL"

NELSEY
V28l

1

= # 00000900

vy 2 )
# 00000900

09000894 'REAL' := # 00000892 °*REAL' :=

*INTEGER?*

" INTEGER"

# 00000900 ' INTEGER®

+

2

*IF* # 00000904

*IF* # 00000904

(2*9)
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# 00000898
# 00000906
SIE® 'EALS
'GOT0' # 0
YEND*

YEND* ;

# 00000502 *REAL®

# 00000905 'REAL®

# CCCCCSC6 'INTEGER?

"IF' 'FALSE' *THEN
*GOTO*' # 00000907
YEND!

"REAL *

"INTEGER"

'ARRAY!

E' 'THEN®

0000901

:= # 00000903

"ARRAY*

"LABEL*

*ARRAY?

"LABEL"

/7 17)

*ARRAY?

(/7 17)

"INTEGER?®

YELSE®

(/=2 5/ )

¢ EUSES

Wiz ) ) 3

L PR )

# 000009C4

*BODLEAN?®

*THEN

Y12

(€AL))
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6.3 For Statement Optimization Examples

In this section are presented three examples of the application
of the transformation set sequence consisting of the identifier
denotation transformation set followed by the for statement opti-
mization transformation set. The first two examples are intended
to illustrate certain aspects of the operation of the for statement
optimization transformation set, while the last is intended to show
the denotation and optimization of a typical simple Algol program,
one which evaluates a polynomial.

The first example program demonstrates the detection of for
statements which must not be optimized. Considering the for state-
ments in order, the reasons they may not be optimized are: The
first statement (in procedure P) contains a formal parameter. (See
the call to P at the end of the program, which gives rise to side
effects on i.) In the second, the loop variable is not a simple
integer. In the third, the loop variable is assigned in the controlled
statement (cf. example 1.1.3(10)). The fourth and fifth for statements
contain step-expressions which involve the loop variable and a
variable assigned, respectively. The sixth statement (cf. example
1.1.3 (13)) contains a procedure call (which in this case does produce
side effects on 1i). The seventh for statement illustrates the
operation of the transformations for multiple for list elements,
arithmetic-expression-elements, and while-elements.

The first example program and its transformed form are:



"BEGIN®
"INTEGER® 'PROCEDURE®' STEP 3
STEP := i= 1+ 1 ;

I
*PRCCEDURE®* P ( X ) 3
*FOR®* [ := 1 *STEP' 1 'UNTIL®' N *DC°
AL/ I /) =2 % X 3
*INTEGER® '"ARRAY' Z (/ 1 : 10 /) ;
*ARRAY' A (/1 : 10 /) ;
*INTEGER' I 4, J 4 K 4, N ;
N = 1C 3
L= Jis= K= 3
YFOR® Z (/ I /) 2= 1 *STEP* 1 *UNTIL® N *DO*
A2 G/ L) )= 2k 28 /)
*FCR®* I := 1 *STEP* 1 'UNTIL®' N *DO*

*BEGIN®
A (/1 7/) :=2 %1 ;
[ 3= 1 +1

*END*

;
'FCR* T 2= 1 "STEP' J + I * K *UNTIL®* N 'DO°
AL/ T /) 2=1 3
*FCR' I 3= 1 *STEP' J + Z (/ 2 /) * K 'UNTIL* N *DO'
Z /1 /7)) =13
'FCR' [ := 1 *STEP' 1 °*UNTIL' N °'DC'

91¢
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*BEGIN'
A (/1 7)
STER

A (/7 17) :=
P ( STEP )
YEND!

*WHILE®

I <= N

"N
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YEEGIN®
*CEC' # 00000943 *INTEGER®' 'PRCCEDURE' 3
'DEC' # CCO000944 'PROCEDURE' 3
*DEC* # 00000941 'INTEGER' 'ARRAY' 3
'DEC* # C0000942 'REAL' 'ARRAY' ;
'DEC* # 00000937 'INTEGER® ;
*CEC' # 00000938 'INTEGER® 3
*DEC* # CC000939 'INTEGER' ;
'DEC®' # 00000940 'INTEGER® 3
'SKIP' # 00000944 'PROCEDURE®' 'BEGIN'
'DEC' # 00000935 'RESULT® ;
'DEC' # 00000936 'FORMAL' ;
'BEGIN®
*DEC' # 00000945 °'LABEL' ;
# 00000937 ‘INTEGER®' := 1 3
# C0000945 'LABEL' : 'IF' # 00000937 'INTEGER' <= ( #
*BEGIN®
. # 00000942 °'REAL' *ARRAY' (/ # 00000937 ' INTEGER®
H
# 00000937 *INTEGER®' := # 00000937 'INTEGER' + 1 3
*GOTO' # 00000945 'LABEL'
YEND*
VENDE

YEND*

00000940

/)

*INTEGER* )

2 * # 00000936

YTHRENY

*FORMAL *

81T
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tSKIP* # 00000943 'INTEGER' *PROCECURE' 'BEGIN'
"DEC* # 00000934 "INTEGER' 'RESULT' 3

# 00000934 *INTEGER' 'RESULT® := # 00000937 'INTEGER' := # 00000937 *INTEGER®' + 1 ;3
YRETURN® # 00000934 "INTEGER® 'RESULT'
SEND®. 3

ALLCCATE ( # 00000942 'REAL' "ARRAY' , 1 , 10 ) 3
ALLOCATE ( # 00000941 'INTEGER' 'ARRAY' , 1 , 10 ) 3
# CCOCCS4C "INTEGER' := 10 '3
# 00000937 *'INTEGER' := # 00000938 'INTEGER' := # 00000939 *INTEGER' :=1 3
*BEGIN®

*DEC' # 00000946 ‘'LABEL"' ;

# 00000941 "INTEGER' 'ARRAY' (/ # 00000537 '"INTEGER' /) :=1 3

# CCC00946 'LABEL' : 'YIF' # 00000941 *INTEGER®' *ARRAY' (/ # 00000937 'INTEGER®' /) <= (
# 00000940 'INTEGER®' ) 'THEN®

*BEGIN'

# 00000942 °'REAL' 'ARRAY' (/ #
/) := 2 * # 00000941 °*INTEGER® "ARRAY' (/
INTE (
7

#_ 00000941 * GER' 'ARRAY!
{/ # 00000937 °*INTEGER® + 1%

*GOTO* # 00000S46 'LABEL'
*END*
YEND' 3
YBEGIN®
*DEC* # 00000947 °LABEL®' ;
# CCCO00937 *INTEGER' :=1 3

(€°9)

000941 'INTEGER' 'ARRAY' (/ # 00000937 'INTEGER®' /)
00000937 *INTEGER®' /) 3

/ # 00000937 'INTEGER' /) := # 00000941 *INTEGER' ' ARRAY*

00
#

61¢
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# C0000947 °*LABEL' : 'IF' # 00000937 *'INTEGER' <= { # 00000940 °*INTEGER®' ) 'THEN®

*BEGIN'
*BEGIN'
) # 00000942 "REAL' *ARRAY' (/ # 00000937 'INTEGER®' /) := 2 % # 00000937 'INTEGER!
H
# 00000937 ' INTEGER®' := # 00000937 °'INTEGER' + 1
*END* 3
# 00000937 'INTEGER' := # 00000937 'INTEGER' + 1 ;3
*GOTO" # 00000947 ‘LABEL'
YEND*
YEND' 3
*BEGIN'

*DEC* # 00000948 'LABEL' ;

# 00000937 'INTEGER®' := 1 3 Z
# 00000948 'LABEL' : *IF* { # 00000937 'INTEGER' - ( # 00000940 *INTEGER®' ) ) * SIGN ( T
# 00000938 *INTEGER' + # 00000937 'INTEGER®' * # 00000939 'INTEGER®' ) <= O 'THEN®

‘BEGIN?
# C0000942 *REAL" 'ARRAY' (/ # 00000937 *INTEGER' /) := # 00000937 °*INTEGFR' ;3

3
# 00000937 'INTEGER' == # 00000937 'INTEGER®' + ( # 00000938 'INTEGER®' + # 00000937
" INTEGER® * # C0000939 'INTEGER' ) 3
*GOTO" # 00000948 ‘'LABEL'
YEND*
YEND' 3
'BEGIN'
*DEC®' # 00000949 'LABEL"' ;
# 00000937 'INTEGER' := 1 3



# CCCCC949 *LABEL' : 'IF' ( # 00000937 *INTEGER' — ( # 00000940 *INTEGER?* ) ¥V % "SIGN |
# 00000938 'INTEGER' + # 00000941 'INTEGER' VARRAY' (/ 3 /) * # 00000939 'INTEGER® ) <= 0 °'THEN'
'BEGIN®
# 00000941 'INTEGER' *ARRAY' (/ # 00000937 'INTEGER' /) := # 00000937 'INTEGFR' 3
4 00000937 'INTEGER' := # 00000937 'INTEGER' + ( # 00000938 'INTEGER' + # 00000941
* INTEGER® 'ARRAY' (/ 3 /) * # 00000939 'INTEGER' ) ;

*GOTO* # 00000S4S 'LABEL®
*END'
NENDY " 3
*BEGIN®
*DEC*' # 00000950 'LABEL®' ;

# 00000937 'INTEGER' := 1 3

# CCCC0950 'LABEL® : 'IF' # 00000937 'INTEGER' <= ( # 00000940
*BEGIN'

*BEGIN®

"INTEGER' ) °*THEN®

(€°9)

# 00000942 'REAL' 'ARRAY' (/ # 00000937 'INTEGER' /)

:= 2 * # 00000937 °*INTEGER?
# 00000943 *INTEGER' 'PROCEDURE"
YEND* 3
# C0000937 °*INTEGER' := # 00000937 'INTEGER' + 1 ;
'GOTO' # 00000950 °*LABEL'
‘END*
*END' 3
*BEGIN®
"DEC' # 00000951 'PROCEDURE' 3

1A



'SKIP' # 00000951 'PROCEDURE' 'BEGIN'

*DEC' # 00000952 'RESULT' 3

# 00000942 °*REAL' 'ARRAY®' {/ # 00000537 *'INTEGER!

YEND' ;
*BEGIN'
# C0000937 'INTEGER' :=1 3
# 00000951 'PRCOCEDURE"
‘END* 3
"BEGIN'
*DEC* # 00000953 'LABEL* 3

# 00000953 *LABEL' : # 00000937

YIF* # 00000937 °*INTEGER' <=
'BEGIN"'
# 00000951 ' PROCEDURE' 3
*GOTC' # 00000953 'LABEL
'END'
SENDSE
*END"* 3
# C000CS44 °'PROCEDURE' { # 00000943
LENDE

# 00000940 *INTEGER'

"INTEGER®

*PROCEDURE"

/) := 2 * # 00000937 'INTEGER®

YINTEGER®* := # 00000937

*THEN?*

)

(444

(€°9)



(6.3) 223

The second example program illustrates various forms of opti-
mizable for statements and the detection of general, linear, and
constant subscripted variables within such statements. Considering
the for statements in order, the points illustrated are: The first
may now be optimized (cf. the previous example) because the parameter
X 1is called by value, hence no side effects can arise. The second
illustrates a simple optimizable for statement containing one linear
subscripted variable. The third and fourth for statements are optimi-
zable, but in each the until-expression must not be calculated in
advance because it contains the loop variable (cf. example 1.1.3 (9))
and a variable assigned (cf. Transformation 9, section 1.1.3), respec-
tively. The fifth statement contains some subscripted variables
which are general (not optimizable) because they contain variables
assigned (cf. example 1.1.4 (14)). In the sixth statement a sub-
scripted variable is declared within the controlled statement, while

»
in the seventh several subscripted variables have non-linear subscripts;
all of these must not be optimized. The eighth statement illustrates
that a for statement and subscripted variable containing complicated
expressions may still be optimizable* Finally the last pair of
for statements illustrates optimization of nested for statements
(cf. the discussion in section 3.2).

The second example program is listed below, first in its original
form, and then after transformation. The program is expanded consid-
erably during transformation, largely as a result of for statement

optimization.

*The redeclaration of serial numbers in the optimized form of this state-
ment (cf. p. 237) arises from the use of rplacd to add generable symbols
to the environment as discussed in section 2.5.2. The solution proposed



YEEGIN®
*INTEGER' *PROCEDLRE®' STEP ;
STEP =" "Ta="1" #21 ;
*PROCEDURE* P ( X ) 3
*VALUE®' X ;
*INTEGER® X 3
'FOR' [ := 1 °STEP* 1 'UNTIL®* N *DC'
A/ 1 /) 3=2 % X 3
"INTEGER® 'ARRAY®' Z (/ 1 = 1C0 4 1 = 100 /) 3
VARRAYE AR, By Co (/1 53 1BC Z) 5
SSINTEGERY 1= ot iy Kty N5
*REAL' REAL 3
REAL == 3 . 14159 ;

*FCR* T 3= 1 *STEP®' 1 °UNTIL®* N *DO*

AL/ 1 /) =2 *1 3

EREURE SIS 2= N1 S STE PV = QUNTEFLY SN &0 = 7= DEY

ARRA IR/ ) e =22 X013

SEOREAS] =] SUSTEP S+ TV UNTTIE2 NS £ SAS7E ] /) == 7e v 00t
A/ T1T7/) =2 %13

CECR* &I = USTiERC ] NUNTTL*SN-EDa!"

*BEGIN®

[}
—

e

(€°9)



J=N-13
ClZAWKZYV/) =1 3
At(/71 /) =8B 1(/7J37/)
YEND' 3
YFOR' [ 3= 1 *STEP' 1 *UNTIL®' N *'DO!
*BEGIN'
A/ 1/) =13
'BECIN'
CARRAY' A (/1 = 17/) 3
AT 2 s=Boli 1)
*END®
*ENC*'
“ECR* [ := 1 'STEP* 1 *UNTIL' N 'DC'
*REGIN'
A/ L %1 /) :=AL/17)3
A (/ REAL * I + 1 /) 2= A (7 'IF* T K< 5 JTHEN®
L YELSE!
I1 -31/)
YENC'
VECR' I := 3 % J + CCS ( K ) *STEP®' COS ( REAL ) 'UNTIL® J % N
Z (/ CCS ( REAL ) + J , K * [ + J =10
SERRY T := 1 *STEP* L SUNTIL®' N *DC'
YFGRY J = 1 "STEP®' 1 'UNTIL' 2 * [ =it n o}
AR g e S & IR (7 TR I R 7 ) s S G Ty /)

(€°9)

|Dn L]

1744



P L STEP )

TEND'




*BEGIN®
*DEC?
SEECY
SRECY

# CCCCC90C6 'INTEGER®' *PROCEDURE' ;
# C0000907 *PROCEDURE" ;
# 00000902 'INTEGER® *ARRAY' ;
'DEC' # CCCCCSC3 '"REAL' 'ARRAY' ;
*CEC' # 00000904 'REAL' 'ARRAY' ;
'DEC*' # 00000905 'REAL' ‘*ARRAY' ;
'*DEC*' # C0000897 *INTEGER' ;
*DEC*' # 00000898 'INTEGER®' ;
*DEC*' # 00000899 'INTEGER' ;
'CEC' # 00000900 'INTEGER®* ;
*DEC®' # COCCO0901 °'REAL' ;
*SKIP* # 00000907 'PROCEDURE' 'BEGIN®

*DEC® # 00000893 *RESLLT" ;

*DEC' # 00000894 ' INTEGER® K]

*CEC' # 00000895 'FORMAL® ;

# CCOCCB894 'INTEGER' := # 00000895 'FORMAL®' ;

*BEGINL"®

*DEC* # 000C0SC8 'LABEL' ;
*DEC' # 000009C9 *INTEGER*
#
#

fDEC! 00000910 'INTEGER?
YPECY 00000911 ' INTEGER?
'BEGIN®

-

..

(€°9)

LT



# 00000897 *INTEGER' := 1 ;
# 00000909 * INTEGER® ..= # 00000900 'INTEGER®
LEND® 5
*BEGIN®
o # 00000910 *INTEGER' ..= 'YREF' # 00000903 'REAL' *ARRAY' *{/1' # 00000897 °'INTEGER®
]

YENDY 3
# 00000897 °'INTEGER® ..= # 00000897 *INVTEGER' + 1 ;
"BEGIN®

# 00000911 ' INTEGER' ..= 'REF' # 00000903 *REAL' 'ARRAY®* *(/1' # 00000897 °*INTEGER®
/) — # 00000910 'INTEGER' ;

YEND' 3
# 00000897 'INTEGER' ..= # 00000897 °*INTEGER' - 1 ;3

# 00000908 'LABEL' : 'IF' # 00000897 'INTEGER' <= # 00000909 'INTEGER' 'THEN®
*BEGIN®
*VAL' # 00000910 *INTEGER®' ..= 2 * # 00000894 'INTEGER' ;
# 00000910 ' INTEGER' ..= # 00000910 *INTEGER' + # 00000911 °*'INTEGER®' ;
# 000C0897 *INTEGER' ..= # 00000897 *INTEGER' + 1 3
*GOTO" # 00000908 'LABEL®
YEND?®
YEND "
RENDASSS
*SKIP* # 00000906 *'INTEGER' 'PROCEDURE®' 'BEGIN'

87¢

€9



*DEC*' # 00000892 *INTEGER® 'RESULT® ;
# C0000892 'INTEGER' 'RESULT' := # 00000897 *INTEGER' := # 00000897 VINTEGER® # 1 %
'RETURN® # 00000892 *INTEGER' 'RESULT'
SENDY .3
ALLCCATE ( # 00000905 ‘'REAL* 'ARRAY' , 1 , 100 ) ;
ALLOCATE ( # 00000904 *REAL' 'ARRAY' , 1 , 100 ) ;
ALLCCATE ( # 00000903 'REAL® "ARRAY' , 1 , 100 ) ;
ALLOCATE ( # 000009C2 'INTEGER® 'ARRAY' , 1 , 100 v 1 » 100 ) ;
# 00000901 'REAL' := 3 ., 14159 ;
# 000CCSCC *INTEGER® := 10 ;
# 00000897 *INTEGER' := # C0000898 *INTEGER' := # 00000899 *INTEGER?"
*BEGINL"
'DEC' # 00000912 *LABEL"* ;
'DEC* # 00000913 *INTEGER' ;
*DEC' # 00000914 'INTEGER®' ;
*DEC*' # 00000915 'INTEGER® ;
*BEGIN®
# 00000897 'INTEGER' := 1 ;
# 00000913 *INTEGER' ..= # 00000900 *INTEGER'
2END® 3
*BEGIN'
# 00000914 °'INTEGER' ..= 'REF' # 00000903 °*REAL' 'ARRAY' '(/1"' # 00000897 *INTEGER?

.
[}
o
.

SEND® 5

(€°9)
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# 00000897 'INTEGER®' + 1
'BEGIN'

# 00000
/) — # 00000914 *I

"INTEGER' ..= # 00000897

915 8UTN
NTEGER'

VEND® 5
# €CC000897
# 00000912
'BEGIN®
*VAL' # 00000914
# 00000914 'INTEGER' ..=
# 00000897 'INTEGER' ..=
*GOTO* # 00000912 °*LABEL'
YEND"
SENDYEES
*BEGINL'
‘CEC®

*INTEGER' - 1
* INTEGER' <=

YINTEGER' .=
ULABELY = ®F*

# €0000897
# 00000897

' INTEGER' ..= 2 * # 00000897
# 00000914 ‘INTEGER'
# 00000897 'INTEGER'

# 00000916
*DEC* # 00000918
*DEC* # 00000919
BEGIN®

# €C000897
RENDY, 3
YBEGIN'

# 00000918

'LABEL® ;
*INTEGER® 3
VINTEGER® 3

*INTEGER®

.
n
—

"INTEGER' ..= 'REF' # 00000903

/) 3

.
’

# 00000913

"INTEGER®

+ # 00000915

-1

SREALY

YARRAY!

*INTEGER"'

R/

TEGER' ..= 'REF' # 00000903 'REAL' 'ARRAY' *(/1* # 00000897 ' INTEGER®
’

CTHENY

*INTEGER"' 3

# 00000897 *INTEGER!

0€T
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0
/) - # 00000918

YEND' 3
# CC00CB97 "INTEGER' ..= # 00000897 *INTEGER® + 1 3
*BEGIN®

# 000009
*IN

39 1

TEGER"' 3

*END* 3

# C0000897 'INTEGER' ..= # 00000897 'INTEGER' - 1 3

# 00000916 *LABEL' : *IF' # 00000897 'INTEGER' <= ( # 00000900

=71 “THEN"

*BEGIN'
TVAL® # 00000618 *INTEGER' ..= 2 * # 00000897 °‘INTEGER' ;
# 00000918 *INTEGER' ..= # 00000918 'INTEGER' + # 00000919
# 00000897 *INTEGER® ..= # 00000897 °*INTEGER®' + 1 3
*GOTO* # 00000916 °'LABEL"
YEND*
YEND"'
*BEGINL"*
*DEC* # 00000920 *LABEL' ;
"DEC' # 00000922 'INTEGER® ;
'DEC*' # 00000923 'INTEGER' ;
*BEGIN'
# 00000897 'INTEGER' :=1
YEND®"3

NTEGER' ..= *REF' # 00000903 °*REAL' 'ARRAY®' *'(/1°*

*INTEGER®

* INTEGER*

# 00000897

* # 00000897

’

YINTEGER'

*INTEGER'

(€°9)
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CET

*BEGIN®
Sl # 00000922 "INTEGER' ..= 'REF®' # 00000903 *REAL' 'ARRAY®' '(/1' # 00000897 ®INTEGFR®
s
NENDSES
# 00000897 °*INTEGER' ..= # 00000897 'INTEGER' + 1 ;
'BEGIN'
# CC000923 *INTEGER® ..= 'REF' # 00000903 °*REAL' 'ARRAY' "(/1' # 00000897 °*INTEGER!®
/) — # 00000922 ‘'INTEGER' ;
*END" ;
# 00000897 ' INTEGER®' ..= # 00000897 °*INTEGER® - 1 ;3
# CC0C0920 'LABEL®' : *'IF' # 00000897 'INTEGER' <= ( # 00000900 *INTEGER® * # 00000903 °'REAL®
*ARRAY' (/ 1 /) - ) "THEN®
*BEGIN' ~
*VAL® # 00000922 °*INTEGER®' ..= 2 * # 00000897 °*INTEGER® ; éi
# 00000922 ' INTEGER' ..= # 00000922 °*INTEGER®' + # 00000923 'INTEGER' ;3
# 00000897 'INTEGER' ..= # 00000897 *INTEGER' + 1 ;
'GOTO* # 00000920 °*LABEL®
YENDY
YEND* 3
*BEGINL’
*DEC® # 00000524 °'LABEL' 3

*DEC* # 00000925 'INTEGER® ;
*DEC* # 00000926 *INTEGER' 3



*DEC*' # 00000927 *INTEGER® 3
*DEC' # 00000928 'INTEGER' 3
*BEGIN'
# 00000897 'INTEGER' :=1 3
# 00000925 'INTEGER' ..= # 00000900 'INTEGER'
YEND' 3
*BEGIN'
# 00000928 *INTEGER' ..= 'REF' # 00000903 °*REAL' 'ARRAY' (/ # 00000899 *INTEGER®' /)

# 00000926 'INTEGER® ..= 'REF' # 0000C9C3 °'REAL' 'ARRAY' ' (/1' # 00000897 * INTEGER®

REND* §
# CC000897 'INTEGER' ..= # 00000897 °*INTEGER' + 1 ;
*BEGIN' f?
# 00000927 *INTEGER' ..= 'REF' # 00000903 'REAL' 'ARRAY' *(/1"' # 00000897 °*INTEGER® 7
/) — # 00000926 °'INTEGER' ;3

»

YEND® 3
# CCO00897 'INTEGER' ..= # 00000897 °*INTEGER®' - 1 3
# 00000924 "LABEL®' : °*IF' # 00000897 'INTEGER®' <= # 00000925 *INTEGER® 'THEN'
'BECGIN'
*BEGIN'
4 00000898 *INTEGER' := ¥ 00000900 'INTEGER' - # 00000897 *INTEGER®' ;
# 00000905 "REAL' *ARRAY® *(/1°' *VAL' # 00000928 'INTEGER' /) := # 00000897 ' INTEGER?

EEG



'VAL' # 0000CS26

/)
*END* 3

¥ C0000926

# 00000897

'GOTO* # 00000S24

'END*
*END' 3
"BEGINL"®

‘DEC* #

*DEC* #

'DEC' #

'"DEC* #

#

#

* INTEGER®
*INTEGER' ..=
'LABEL

€0000929
00000930
00000931
00000932
00000933
00000934

*LABEL' ;

*INTEGER® 3
"INTEGER"® 3
*INTEGER" 3
" INTEGER® 3
*INTEGER"® 3

*DEC!
*OEC?
"BEGIN®
# CC000897
# 00000930
SENDY 3§
*BEGIN'
# 00000933

"INTEGER' :=
*INTEGER®' ..=

*INTEGER® ..=
/) 3

# 00000931 'INTEGER' ..=

YEND* 3

1

" INTEGER®

<= # 00000926
# 00000897

# 00000900

TREF?

'REF!

«e= # 00000904 'REAL’

* INTEGER?®

LINTEGER®: &1

*INTEGER"

# 00000904 °*REAL’

# 00000903 *REAL'

+ # 00000927

"ARRAY?*

"ARRAY?*

* ARRAY!

/2L

/1Y

e T

*INTEGER' 3

# 00000897

# 00000897

# 00000898

*INTEGER"

*INTEGER?!

" INTEGER?®

vET

(€°9)



# CC000897 'INTEGER' ..= # 00000897 *INTEGER' + 1 ;

*BEGIN®
# 00000934 'INTEGER' ..= 'REF' # 00000904 °'REAL' 'ARRAY' *(/1' # 00000897 *'INTEGER"'
/) — # 00C0C933 'INTEGER® ;
# 00000932 *INTEGER' ..= 'REF' # 00000903 *REAL' 'ARRAY' '(/1' # 00000897 *INTEGFR'
/) — # 00000931 'INTEGER' ;

YEND"*
# 00000897 'INTEGER' ..= # 00000897 *INTEGER®' - 1 ;
# 00000929 °*LABEL' : 'IF' # 00000897 'INTEGER' <= # 00000930 *INTEGER®' *THEN'

*BEGIN®
*BEGIN®
*VAL® # 00000931 *INTEGER' ..= # 00000897 'INTEGER® ;
*BEGIN® G
'DEC' # 0CCOCBS6 'REAL' 'ARRAY' ; 2
ALLOCATE ( # 00000896 *REAL' 'ARRAY' , 1 , # 00000897 *INTEGER' ) 3
# 00000896 'REAL' 'ARRAY' *(/1' # 00000897 *INTEGER® /) := 'VAL' # 00000933
*INTECER®
*END*
*END' ;

# 00000932 'INTEGER®' ..= # 00000933 *INTEGER' + # 00000934 'INTEGER' ;
# CCCO0931 'INTEGER' ..= # 00000931 'INTEGER' + # 00000932 *INTEGER®' ;
# 00000897 'INTEGER®' ..= # 0C000897 'INTEGER®' + 1 ;

'GOTO* # 0000092S 'LABEL'

YEND"

GET



SEND* 3
YHEGINL"

9€¢

/)

/)

TDECS
LHECH

00000938 YLABE]L "
00000S36 'INTEGER

LDEGH
*BECIN?'
# CCC0C897 "INTEGER?
# 00000936 *'INTEGER®
LENDIES
SBEGINI
# COC00937 'INTEGER®

00000938 ' INTEGER

YEND' 3
# 00000897 °'INTEGER®' ..=
'BEGIN®

TEGER®

0000938 'IN
*INTEGER" 3

00C039%7
*END' 3
# CCCOC897 'INTEGER' ..=
# 00000935 °"LABEL" = 'IF*
'BEGIN®

'BEGIN'

#
#

*DEC' # 00000937 'INTEGER'
#

.
’

.

=13

.o= # 0000

«e= 'REF?

# 00000897

<= 'REF'

# 00000897

# 0000C897

0900 *INTEGER®

# 00000903 °'REAL'

*INTEGER"' +

# 00000903 'REAL?

*INTEGER' -

1

1

.
’

*ARRAY?'

*ARRAY?

YINTEGER® <= # 00000936

*(/1' # 00000897 *INTEGER®

(/1" # 00000897 *INTEGER®

*INTEGER"' 'THEN'

(€9



4 00000903 'REAL' *ARRAY' *(/1' # 00000897 *INTEGER' * # 00000897 * INTEGFR' /)
3= 'VAL' # 00000937 'INTEGER' 3
# 00000903 'REAL' *ARRAY' '(/1' # 00000901 'REAL' * # 00000897 YINTEGER' + 1 /)
:= § 00000903 °*REAL' 'ARRAY' '(/1' 'IF' 4 C0000897 'INTEGER® < 5 'THEN'
1 ELse"
# 00000897 'INTEGER' - 3 /)
YEND' 3

4 00000937 ' INTEGER' ..= # 00000937 'INTEGER®' + # 00000938 'INTEGER' ;
# 00000897 "INTECER' ..= # 0C000897 'INTEGER' + 1 3
1GOTO' # CO0CC935 'LABEL'

YEND"Y
RENDY" 3
*BEGINL*
*DEC' # 00000939 °‘LABEL"' ;3
'DEC' # 00000940 *INTEGER' 3
*DEC' # 00000941 'INTEGER' 3
'CEC* # 00000939 'INTEGER' 3 .
'DEC' # 00000940 'INTEGER®' ;
*BEGIN®
4 00000897 'INTEGER' := 3 * # 00000898 *INTEGER' + COS ( # 00000899 * INTEGER?®

# C000094C 'INTEGER' ..= COS ( # 00000901 *REAL' ) 3
# C0000941 'INTEGER' ..= # 00000898 'INTEGER' * # 00000900 *INTEGER®

SENDY. 3
*BEGIN®
4 00000939 'INTEGER' ..= 'REF' # €0000902 *'INTEGER' 'ARRAY' '(/1' COS ( # 00000
SREAL' ) + # 00000898 'INTEGER' , # 00000899 'INTEGER' * # 00000897 YINTEGER' + # 0000089

00901
8 *'INTEGER!?

(€°9)
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8€C

/) 3
LENDY 3
# 00000897 "INTEGER' ..= # 00000897 °*INTEGER' + # 00000940 'INTEGER® ;3
*BEGIN'
# 0000094C *INTEGER® ..= 'REF' # 00000902 *INTEGER' *ARRAY' *(/1* COS ( # 00000901
*REAL® ) + # 00000898 'INTEGER®' , # 00000899 °*INTEGER' * # 00000897 'INTEGER®' + # 00000898 'INTEGFR®
/) — # 00CCCS39 'INTEGER® 3

YEND' 3
# 00000897 'INTEGER®' ..= # 00000897 'INTEGER®' - # 00000940 "INTEGER®' ;

# 00000939 *'LABEL' : 'IF' ( # 00000897 'INTEGER®' - # 00000941 'INTEGER®' ) * SIGN ( # 00000940
*INTEGER®' ) <= O 'THEN?®

*BEGIN'
'VAL® # 00000939 'INTEGER' ..= # 00000897 *INTEGER®' ;3
# 00000939 " INTEGER' ..= # 00000939 *INTEGER®' + # 00000940 'INTEGER®' 3
# 00000897 'INTEGER®' ..= # 00000897 °'INTEGER' + # 00000940 'INTEGER' ;3
*'GOTO' # 0000093S ‘'LABEL'

(€°9)

YEND'

END

*BEGINL"®
*DEC' # 00000950 'LABEL' ;
*DEC' # 00000951 'INTEGER®' 3
*DEC* # 00000952 °*'INTEGER® ;
*DEC' # 00000953 °'INTEGER® 3
"DEC' # 00000954 'INTECER® 3



*BEGIN'
# 00000897 ‘'INTEGER®' == 1 3
# 00000951 'INTEGER' ..= # 00000900 *INTEGER'
YEND'
SBEGIN®
# C00C0954 *INTEGER' ..= 'REF* # 00000902 *INTEGER' *ARRAY' (/ 1 4, 1 /) ;
# 00000952 'INTECER' ..= 'REF' # 00000902 'INTEGER' 'ARRAY' '(/1' # 00000897 *INTEGER®

=1 0% 3
SEND® 3
# 00000897 'INTECER' ..= # 00000897 °*INTEGER' + 1 ;
*BEGIN®
# 00000953 'INTEGER' ..= 'REF' # 00000902 *INTEGER® 'ARRAY' *'(/1* # 00000897 *INTEGER®
» 1 7)) — F 00000952 'INTEGER® 3

(€°9)

“END* 3
# 00000897 *INTEGER' ..= # 00000897 *INTEGER®' - 1 3
# CCCCCSS50 'LABEL' = "IF' # 00000897 'INTEGER®' <= # 00000951 " INTEGER®' *THEN?'

"BEGIN®
*BEGINL®
*DEC' # 00000942 'LABEL' ;
*DEC* # 0000CS432 'INTEGER® ;
*DEC* # 00000S44 'INTEGER' ;3
"DEC* # 00000945 *INTEGER' ;
*DEC' # 00000946 'INTEGER®' 3
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# 000
*INTEGER® /) — # 0000094

'DEC® # 00000947 *INTEGER® 3
*DEC* # 00000948 °*INTEGER® ;
*DEC® # 00000949 "INTEGER® 3
*BEGIN'

# 00000898 *INTEGER® := 1 3

# 00000943 °*INTEGER®' ..= 2 * # 00000897

YENDESSS
*BEGIN®

# 00000949 *INTEGER' ..= # 00000952 °INTEGER®
# 00000948 *INTEGER' ..= # 00000954 'INTEGER®

# 00000946 *INTEGER' ..= 'REF' # 00000902
, # 00000898 *INTEGER®' /) 3
. # 00000944 'INTEGER®' ..= °REF' # 00000902
;
CENDY 3
# 00000898 *INTEGER' ..= # 00000898 'INTEGER'
*BEGIN'
# 00000947 'INTEGER' ..= 'REF' # 00000902
# 00000898 'INTEGER' /) — # 00000946 °*INTEGER' 3
00945 'INTEGER!' ..= *REF' # 00000902
4 "INTEGER' 3
YEND' 3
# 00000898 'INTEGER®' ..= # 00000898 'INTEGER'
# 00000942 *LABEL® : 'IF' # 00000898 'INTEGER'

*INTEGER*

* INTEGER®

+

* INTEGER'

*INTEGER®

1

.
y

# 00000943

*ARRAY' (/1"

YARRAY' (/1

*ARRAY' (/1"

*INTEGER®

1

1

"INTEGER' — # 00000900 °*INTEGER'

"ARRAY® *(/1°* # 00000897

+ # 00000898

00000897

» # 00000898

TTHEN'®

o%e
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*BEGIN®

*VAL' ¥ 000CCS48 *INTEGER' ..= 'VAL' # 00000949 °*'INTEGER®' # °'VAL' # 00000944
*INTEGER® - 'VAL' # 00000546 °*INTEGER®' 3

# C00C0946 'INTEGER' ..

n

# 00000946 'INTEGER' + # 00000947 'INTEGER®' 3
# 00000944 *INTEGER' ..= # 00000944 °*INTEGER' + # 00000945 'INTEGER' ;
# 00000898 'INTEGER®' ..= # 00000898 'INTEGER' + 1 ;
*GOTO' # 00000942 ‘'LABEL’

YEND'

‘END"* 3

# 00000952 'INTEGER®' ..= # 00000952 °'INTEGER' + # 00000953 *INTEGER' ;
# 00000897 'INTEGER®' ..= # 00000897 'INTEGER' + 1 ;
*GOTO* # 00000950 'LABEL'

TEND?

TEND' ;

# 0000C907 *PROCECURE' ( # 00000906 *INTEGER' 'PROCEDURE®' )
*END? :

(€°9)
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242 (6.3)

The final example is a program for polynomial evaluation, con-
sisting of a procedure which performs the polynomial evaluation
and a driver program which reads and prints the data and calls the
procedure. Note that the for statement within the procedure is
optimizable even though it contains a formal parameter, because
this formal parameter is an array identifier, and hence cannot give
rise to side effects. The original form of the program, followed

by its transformed form, is:



*BEGIN'
YTREAL' 'PROCEDURE' EVALUATFPCLYNOMIAL ( F ) OFDEGREF : ( N )
*VALUE* N » X 3
VARRAYY '3
SREALY X3
*INTEGER' N 3
VREGTNY
MINTEGERY T 3
YREALY P 3

FERRY T 3= N = L SSTEP® = ) “VUNTIL" O 'DD?
PRES I (R ) S S FRU AL /) S
EVALUATEPCLYNOMIAL == P
TENDE 3
* INTEGER® I 4, N 3 ®
SREAL® F » X 3§
READ ( N ) 3
PRINT ( N )
*REGIN'
YARRAY' A (/ O = N /) 3
YFCR' I 2= N OSTEP' = 1 SUNTIL® O *'DC*
"BECIN®
READ (-8 A/ T-/)1 )5

..
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PRINT ( A (/ T /) )
'END* ;
READSS ()5
PRINT ( X ) 3
F 2= EVALUATEPOLYNCMIAL
PRINT ( F )
‘END*
"END!

e
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'BEGIN'
'DEC* # 00000967 *REAL' 'PROCECURE' ;
'DEC*' # 00000963 *INTEGER' ;
'DEC* # C0000964 'INTEGER' ;
'CEC' # 00000965 'REAL' ;
'DEC' # 00000966 'REAL' ;
"SKIP' # C0000967 'REAL' *PROCEDURE' 'BEGIN®
'DEC* # 00000956 'RFAL' 'RESULT' ;
'DEC' # 00000957 'INTEGER' ;
'DEC' # 00000958 'RFAL' ;
'DEC' # 00000959 'FORMAL' ;
'DEC' # 00000960 *FORMAL' ;
'DEC' # 00000S61 'FORMAL®' ;
# C0000958 'REAL' := # CCCO00961 f'FORMAL' ;
# 00000957 *INTEGER® := # 00000960 *FORMAL' ;
YBEGIN'
'DEC' # 00000954 ' INTEGER' ;
'CEC' # 000CCSSS 'REAL® ;
# 00000955 'REAL' := # 00000959 'FORMAL' (/ # 00000957 *INTEGERS LYk
YBEGINL'®
'DEC' # 00COCS68 'LABEL' ;
'DEC' # 00000969 'INTEGER' ;
'DEC' # 00000970 'INTEGFR' ;
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"DEC®' # 00000971 'INTEGER' ;

*BEGIN®
# 0000C954 *INTEGER' := # 00000957 *INTEGER' - 1 ;
# 00000969 °'INTEGER' ..= 0

LEND LS

'BEGIN'

7 # 00000970 'INTEGER' ..= 'REF' # 00000959 'FORMAL' '(/1' # 00000954 *INTEGER?®
’

SiENDIE
# 00000954 ' INTEGER®' ..= # 00000954 °*INTEGER' - 1 ;
*BEGIN?

# 00000971 °*INTEGER' ..= 'REF' # 00000959 'FORMAL' *(/1' # 00000954 'INTFGER®
/) - # 00CCO970 *INTEGER' ;

(€9)

EENDESES

# 00000954 * INTEGER' ..= # 00000954 'INTEGER®' + 1 3

# 00000S68 'LABEL' : 'IF' # CO0CC954 'INTEGER' >= # 00000969 ' INTEGER' 'THEN!
"BEGIN'

o # 00000955 'REAL' := ( # 00000955 'REAL' * # 00000958 'REAL' ) + 'VAL' # 00000970
*INTEGE ;

# 00000970 'INTEGER®' ..= # 00000970 *INTEGER®' + # 00000971 'INTEGER' 3
# 00000954 'INTEGER' ..= # 00000954 'INTEGER' - 1 ;
'GCTO*' # 00000968 *LABEL®
YEND*
SENDY. 3



# 00000956

HENDY 3
*RETURN®
YEND' 3

READ ( # 00000964
{ # 00000964

PRINT
'*BEGIN?®
“DECY

*BEGINL"'
NBECT il
‘DEC* #
SDEC" #
'DEC* #

*BEGIN'

# 00000G63
# 00000973

LENDY .5
'BEGIN®

# 00000974

*END* 3

# 00000963

# 00000962
ALLOCATE ( # C0000962

# 00000956

00000972
00000973
00000974
00000975

SREAL®

'REAL?

YREAL®

" INTEGER"
* INTEGER' .

" INTEGER' ..=

RESULT®

CINTVEGER® ) 3§
*INTEGER" ) 3

* ARRAY
*REAL"

YLABELY 3
*INTEGER"
* INTEGER"
"INTEGER!

* INTEGER' .

*ARRAY' , 0

# 00000963

= # 00000955 'REAL'

*RESULT?

(Y
’

# 00000964 ' INTEGER' ) 3

(€°9)

00000964 'INTEGER' 3

.= 'REF' # 00000962 'RFAL' 'ARRAY' *(/1' # 00000963 *INTEGER'

"INTEGER' - 1 3

LYe
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*BEGIN'
# 00000975 'INTEGER' ..= 'REF' # 00000962 *REAL' 'ARRAY' *(/1' # 00000963 'INTEGER®
/) — # 00C00974 'INTEGER' 3
'‘END"' ;
# 00000963 ' INTEGER' ..= # 00000963 *INTEGER' + 1 ;
# C0000972 'LABEL®' : 'IF' # 00000963 'INTFGER' >= # 00000973 °*INTEGER®' *'THEN'
"BEGIN®
FBEGINY
READ ( 'VAL* # 00000974 *'INTEGER' ) 3
PRINT ( *VAL®' # 00000974 *'INTEGER' )
SENEY %
# 00000974 ' INTEGER' ..= # 00000974 'INTEGER' + # 00000975 'INTEGER®' ;
# 00000963 *INTEGER' ..= # 00000963 'INTEGER' - 1 3 >
L5070 4 £DOD0CS1Z "LABEL® é
YEND?
VENDSES
READ ( # 00000966 *'REAL' ) ;3
PRINT ( # 00000966 'REAL' ) ;3
# C0000965 'REAL' := # 00000967 'REAL' *PROCEDURE' ( # 00000962 'REAL' 'ARRAY' , # 00000964
*INTEGER' , # 00000966 'REAL' ) ;
PRINT ( # 00000965 'REAL' )

*END*
LEND Y
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